CONCEPT: HENDERSON-HASSELBA	LCH EQUATION	
We learned that whenever we had a(n)	acid or base we were supposed to use our favorite friend the	
Chart in order to calcu	late the pH or pOH.	
Now, whenever we have a buffer solution	on we can skip it and use the Equation	۱.
Buffer Equation:		
	$pH = pKa + log \frac{(conjugate base)}{(weak acid)}$	

EXAMPLE: What is the pH of a solution consisting of 2.75 M sodium phenolate (C_6H_5ONa) and 3.0 M phenol (C_6H_5OH). The K_a of phenol is 1.0 x 10⁻¹⁰.

PRACTICE: Calculate the pH of a solution formed by mixing 250 mL of a 0.500 M $C_2H_5NH_2$ solution with 300 mL of a 0.450 M $C_2H_5NH_3^+$ solution. (K_b of $C_2H_5NH_2$ is 5.6 x 10⁻⁴).

CONCEPT: HENDERSON-HASSELBALCH EQUATION

EXAMPLE: What is the buffer component concentration ratio, $\frac{[Pr^-]}{[HPr]}$, of a buffer that has a pH of 5.11. (The K_a of HPr is 1.30 x 10⁻⁵).

EXAMPLE: Over what pH range will an oxalic acid $(H_2C_2O_4)$ / sodium oxalate $(NaHC_2O_4)$ solution work most effectively? The acid dissociation constant of oxalic acid is 6.0×10^{-2} .

- a) 0.22 2.22
- b) 1.00 3.00
- c) 0.22 1.22
- d) 2.0 4.0

PRACTICE: Determine how many grams of sodium acetate, NaCH₃CO₂ (MW: 82.05 g/mol), you would mix into enough 0.065 M acetic acid CH₃CO₂H (MW: 60.05 g/mol) to prepare 3.2 L of a buffer with a pH of 4.58. The K_a is 1.8 x 10⁻⁵.

CONCEPT: HENDERSON-HASSELBALCH EQUATION

EXAMPLE: Which weak acid-conjugate base combination would be ideal to form a buffer with a pH of 4.74.

- a) Cyanic acid and Potassium cyanate ($K_a = 4.9 \times 10^{-10}$)
- b) Benzoic acid and Lithium benzoate ($K_a = 6.3 \times 10^{-5}$)
- c) Acetic acid and Sodium acetate ($K_a = 1.7 \times 10^{-5}$)
- d) Ammonium chloride and Ammonia ($K_a = 5.56 \times 10^{-10}$)
- e) Formic acid and Cesium formate ($K_a = 1.7 \times 10^{-4}$)

PRACTICE: A buffer solution is made by combining a weak acid with its conjugate salt. What will happen to the pH if the solution is diluted to one-fourth of its original concentration?

- a) The pH will increase
- b) The pH will decrease
- c) The pH will remain constant
- d) The solution will become more neutral