CONCEPT: SPECIFIC GRAVITY

 Specific gravity represents the density of a 	divided by the density of _	at the same temperature.
--	-----------------------------	--------------------------

- □ Since the units cancel out, specific gravity is _____
- □ **NOTE:** As the temperature changes, the density of water changes.

Densities of Water		
Temperature (°C)	Density	
-30.0°	0.98385	
0.00°	0.99987	
3.98°	1.00000	
10.0°	0.99975	
25.0°	0.99700	
100°	0.95865	

EXAMPLE: If the specific gravity of sulfuric acid is 1.27 at room temperature (25°C), what is its mass (in mg) for 2.3 L?

PRACTICE: What is the specific gravity of lithium metal (in g/mL) at 10.0°C if a cube measures 0.82 cm x 1.45 cm x 1.25 cm and has a mass of 0.794 g?

PRACTICE: Ethyl alcohol has a specific gravity of 0.7892 at 10°C. What is the volume of 250 g of ethyl alcohol?