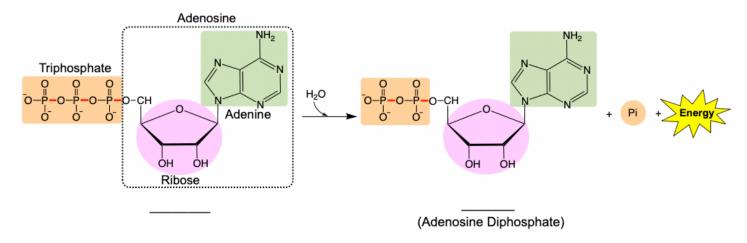

CONCEPT: ATP AND ENERGY

Structure of Mitochondria

- Mitochondria: _____ producing organelles where majority of _____ is produced.
 - □ Site of _____ metabolic pathway.
 - Cristae: ______ inner membranes, provides _____ surface area for production of ATP.


EXAMPLE: Which structure in the mitochondrion contributes significantly to ATP synthesis?

- a) Matrix
- b) Cristae
- c) Intermembrane space
- d) Outer membrane

CONCEPT: ATP AND ENERGY

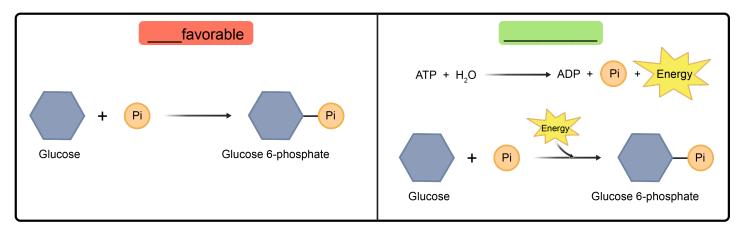
Adenosine Triphosphate (ATP)

- Energy obtained from food catabolism is stored in _____ molecules.
- ATP is a _____ ___ compound, stores and transports energy.
 - □ Has high-energy _____bonds.
 - ☐ Hydrolysis of ATP yields Energy.

□ **Note:** Hydrolysis of ADP produces _____ (Adenosine Monophosphate) + **Energy**.

EXAMPLE: Which components make up the structure of ATP?

- a) Adenine, ribose sugar, and one phosphate group.
- b) Adenosine, ribose sugar, and two phosphate groups.
- c) Adenine, ribose sugar, and three phosphate groups.
- d) Adenosine, ribose sugar, and three phosphate groups.


PRACTICE: Hydrolysis of Adenosine Diphosphate yields:

- a) Ribose, inorganic phosphate, and energy.
- b) Adenosine Monophosphate, one inorganic phosphate, and chemical (potential) energy.
- c) Adenosine Monophosphate, three inorganic phosphates, and energy.
- d) Adenosine Monophosphate, one inorganic phosphate, and kinetic energy.

CONCEPT: ATP AND ENERGY

Coupled Reactions

- Not every reaction in metabolic pathways is ______.
 - □ Need to _____ with favorable (exothermic) reactions, such as ATP hydrolysis.
 - Serves as energy source to _____ unfavorable reactions.

EXAMPLE: Formation of sucrose from glucose and fructose is coupled with ATP hydrolysis. What role does ATP play?

- a) Transfer energy to drive endothermic reaction.
- b) To act as a catalyst.
- c) Speed up the rate of the reaction.
- d) Absorb energy from the surroundings.

PRACTICE: An athlete is training for a marathon. Every mile that the athlete runs, an average of 117.5 kcal of energy is expanded. How many moles of ATP would the athlete burn during a full marathon (26.2 mi)?

Use conversion factor: 1 mole ATP = 7.3 kcal.