| CONCEPT: | NAMING | ACIDS | |----------|--------|--------------| |----------|--------|--------------| - Acid: usually a covalent compound beginning with a hydrogen ion called the ______ ion. - □ Covalent Compound: a compound that contains only _____ bonded together HCI HNO₂ H₂SO₄ H₃PO₄ HClO₂ Acetic Acid HC₂H₃O₂ or CH₃COOH #### **Binary Acids** • Represent covalent compounds containing the H+ ion bonded to a nonmetal anion that is not ______. ## Rules for Naming Binary Acids **STEP 1:** The prefix will be ______ to represent the H⁺ ion. **STEP 2:** Use the base name of the nonmetal. □ When naming acids, we must use _____ for the element S and _____ for the element P. STEP 3: The suffix will be ______. **EXAMPLE**: Write the formula for each of the following compounds: a. Hydroiodic acid **b.** Hydroselenic acid c. Hydrofluoric acid **PRACTICE:** Give the systematic name for the following compound: H₂S PRACTICE: Give the systematic name for the following compound: HCN ### **CONCEPT: NAMING ACIDS** ### **Oxyacids** Represent covalent compounds containing the hydrogen ion bonded to polyatomic ion containing ______. # **Rules for Naming Oxyacids** 1) If the polyatomic ion ends with *-ate* then change the ending to ______. MEMORY TOOL I _____ an acid and it was _____! H^+ + $NO_3^ \longrightarrow$ HNO_3 2) If the polyatomic ion ends with –ite then change the ending to ______. MEMORY TOOL I only _____ into things that are _____. H^+ + $NO_2^ \longrightarrow$ HNO_2 Nitrite Nitr_ **EXAMPLE**: Write the formula for each of the following compounds: **a.** H₂CO₃ **b.** H₃PO₃ **c.** H₂SO₄ PRACTICE: Write the formula for the following compound: Hypobromous acid PRACTICE: Write the formula for the following compound: Cyanic acid