- Gluconeogenesis is a sequence of _____ biochemical reactions with 2 pyruvates as the starting metabolites.
 - □ Reactions ______, & ____ are different from glycolysis, the rest are the same.

Gluconeogenesis

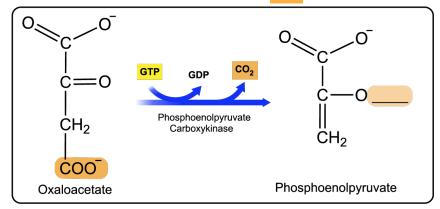
Pyruvate

PEP

3-8

Fru-1,6-BP

Fru-6-P


Glu-6-P

Glucose

Glycolysis

- 1 Oxaloacetate Formation x 2: CO₂ is added to pyruvate by pyruvate _____lase to produce oxaloacetate.
 - □ ATP is converted to _____.
 - □ **Note:** _____ acids can enter as either pyruvate or oxaloacetate.

- Decarboxylation & Phosphorylation x 2:PEP carboxy_____ removes CO₂ and adds _____ group.
 - □ GTP is converted to GDP. □ 1 C atom is lost as CO₂.

EXAMPLE: How many total carbon atoms are lost in the first 2 reactions of gluconeogenesis?

a) 0

b) 1

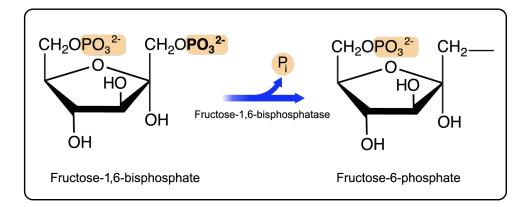
c) 2

d) 4

- **3** Hydration x 2: PEP undergoes hydration to produce 2PG.
 - □ Catalyzed by enzyme _____

- 4 Isomerization x 2: 2PG undergoes isomerization to yield 3PG.
 - □ Catalyzed by enzyme phosphoglycerate _____.

- **5** Phosphate Transfer x 2: 3PG produces 1,3-bisphosphoglycerate by gaining a P_i group.
 - □ Catalyzed by phosphoglycerate _____. □ ATP is converted to ADP.

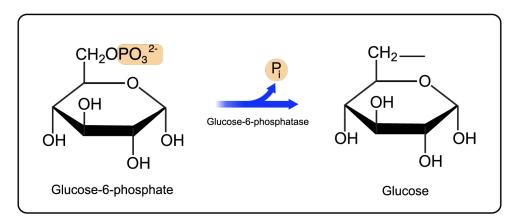

- **6** Reduction x 2: 1,3-bisphosphoglycerate undergoes reduction to produce G3P.
 - □ Catalyzed by enzyme G3P ______. □ NADH is oxidized to NAD+.

- 7 Isomerization: One G3P molecules is isomerized to dihydroxyacetone phosphate (DHAP).
 - □ Catalyzed by enzyme triosephosphate _____.
 - □ **Note:** Glycerol enters gluconeogenesis as ______.

8 Linkage: Enzyme _____ combines 2 triose phosphates into fructose-1,6-bisphosphate.

EXAMPLE: Which enzymes so far are involved in glycolysis but not gluconeogenesis?

- a) pyruvate carboxylase
- b) phosphoglycerate kinase
- c) pyruvate kinase
- d) glyceraldehyde-3-phosphate dehydrogenase
- **9 Dephosphorylation:** Enzyme fructose-1,6-bisphosphat_____ removes a P_i group to form fructose-6-phosphate.


EXAMPLE: Why is it not possible to dephosphorylate fructose-1,6-bisphosphate with phosphofructokinase enzyme?

- a) Phosphofructokinase does not function properly in the cytoplasm of the cell.
- b) Phosphofructokinase catalyzes transfer of a Pi group from one molecule to another, not removal of a Pi group.
- c) Phosphofructokinase lacks enough energy to catalyze dephosphorylation.
- d) It is possible.

10 Isomerization: Enzyme phosphogluco_____

_ isomerizes fructose-6-phosphate into glucose-6-phosphate.

11 Dephosphorylation: Enzyme glucose-6-phosphatase removes a Pi group forming _____

EXAMPLE: Step 9 and 11 of Gluconeogenesis:

- a) Uses ADP to dephosphorylate and produces ATP.
- b) Produces ADP as a result of dephosphorylation.
- c) Requires GTP to dephosphorylate.
- d) Does not require energy to dephosphorylate.

Remembering Gluconeogenesis

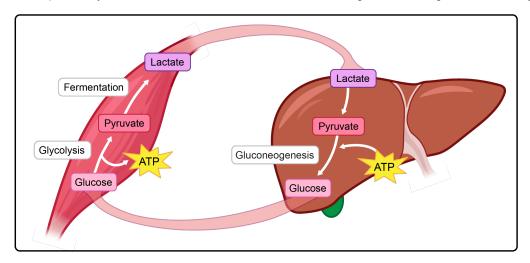
Remembering Gluconeogenesis			
MEMORY TOOL 1 (Reactions)	In thest minutes of accident	call	—
MEMORY TOOL 2 (Metabolites)	iratesnlyop	ruitrom	orgeousardens
MEMORY TOOL 3 (Enzymes)	iratesonsume	ructoseizizz	lucoseizz

Summary

• Gluconeogenesis reduces pyruvate to glucose via following reaction:

 MEMORY TOOL 4:
 Reaction 1: ATP
 Reaction 2: GTP
 Reaction 5: ATP

 __ll __he __irates
 __ot __o __arty
 ___ 5 __m


EXAMPLE: Reactions 1 & 2 consume ____ & ____ and are catalyzed by _____ & ____.

- a) ATP & GTP, Pyruvate oxaloacetase & Oxaloacetate carboxykinase.
- b) ATP & GTP, Pyruvate carboxylase & Phosphoenolpyruvate carboxykinase.
- c) GTP & ATP, Pyruvate carboxykinase & Phosphoenolpyruvate carboxylase.
- d) GTP & ATP, Phosphoenolpyruvate carboxykinase & Phosphoglycerate kinase.

CONCEPT: GLUCONEOGENESIS
PRACTICE: The following metabolites are present both in glycolysis and gluconeogenesis, except:
a) oxaloacetate
b) fructose-1,6-bisphosphate
c) glyceraldehyde-3-phosphate
d) dihydroxyacetone phosphate
PRACTICE: Which molecule is added to pyruvate and then removed in the next reaction?
a) H ⁺
b) H ₂ O
c) PO ₃ ² -
d) CO ₂
PRACTICE: Enzyme responsible for decarboxylation and phosphate transfer in the same gluconeogenic reaction is:
a) Tyrosine kinase
b) Oxaloacetate carboxykinase
c) Pyruvate kinase
d) Phosphoenolpyruvate carboxykinase
e) Phosphofructokinase
PRACTICE: Fructose-1,6-bisphosphate is dephosphorylated by to fructose-6-phosphate.
a) Glucose-6-phophatase
b) Fructose-1,6-bisphosphatase
c) Phosphofructokinase
d) Fructose-6-phosphotase

Cori Cycle

- Cyclic metabolic pathway that transports _____ from muscle cells to liver cells and converts it to _____
- Recall: Lactate is produced by muscle cells during _____aerobic conditions.
 - □ It is then transported by bloodstream to liver cells and converted to glucose through _____neogenesis.

EXAMPLE: The primary purpose for Cori cycle is to:

- a) Produce lactate through fermentation process.
- b) To provide a metabolite for gluconeogenesis.
- c) Generate glucose for muscle cells to use as energy source.
- d) Provide liver with much needed energy.

PRACTICE: Which of the following statement(s) correctly describes the Cori cycle?

- a) Lactate is converted back to pyruvate in the muscles.
- b) Conversion of lactate to glucose in the liver generates ATP.
- c) Glucose from muscle cells is transported to liver through bloodstream.
- d) Lactate from the muscle cells is regenerated into glucose in the liver.
- e) Both a & b.
- f) a, c & d