CONCEPT: MOLECULAR EQUATIONS

Introduction to Molecular Equations

- A *Molecular Equation* shows the intact instead of their dissociated ionic forms.
 - □ Molecular Equation: Reactant 1 + Reactant 2 → + _____ + ____

2
$$HCIO_4$$
 (aq) + **1** $Ba(OH)_2$ (aq) \longrightarrow **1** $Ba(CIO_4)_2$ (aq) + **2** H_2O (l)

- Neutralization Equation: Acid + Base ---- + _____ + _____ .
- Gas Evolution Equation: Reactant 1 + Reactant 2 ---- + _____ + _____.
- **Precipitation Equation:** If at least one of the products formed is a ______ ionic compound.

EXAMPLE: Which of the following is a precipitation reaction?

a) HCl (aq) + KOH (aq)
$$\longrightarrow$$
 H₂O (l) + KCl (aq)

b) Mg (s) + AgNO₃ (aq)
$$\longrightarrow$$
 Ag (s) + Mg(NO₃)₂ (aq)

c)
$$ZnBr_2$$
 (aq) + 2 KOH (aq) \longrightarrow $Zn(OH)_2$ (s) + 2 KBr (aq)

Solving Molecular Equations

• A molecular equation can be written when given Reactant 1 and Reactant 2.

EXAMPLE: Predict whether a chemical reaction occurs and write the balanced molecular equation.

STEP 1: Break up Reactant 1 and Reactant 2 into their ionic forms.

STEP 2: Swap Ionic Partners by remembering that opposite charges attract.

□ Apply the rules for combining ions based on the numerical values of their charges.

STEP 3: A reaction only occurs if a ______, or liquid water is formed as a product.

- □ If both of the products formed are _____ (soluble) then NO REACTION has occurred and we STOP.
- □ Use the Solubility Rules to determine if the products formed will be soluble or insoluble.

STEP 4: If necessary, balance your molecular equation by placing the correct coefficients in front of each molecule.

CONCEPT: MOLECULAR EQUATIONS

PRACTICE: Predict whether a chemical reaction occurs and write the balanced molecular equation.

PRACTICE: Predict whether a chemical reaction occurs and write the balanced molecular equation.

$$__MgBr_2$$
 (aq) + $__NaC_2H_3O_2$ (aq) \longrightarrow

PRACTICE: Determine the balanced equation for the neutralization equation.