CONCEPT: ACID-BASE EQUIVALENTS

- Equivalents are used to measure the number of ____ ions or ___ ions in acids and bases, respectively.
 - □ **Equivalent (Eq) of Acid:** amount of acid that contributes ___ mole of _____ H⁺ ions.
 - □ Equivalent (Eq) of Base: amount of base that contributes ___ mole of ____ ions.

- To calculate number of equivalents of acid or base, we simply multiply ___ by number of _____ of acid or base.
 - \Box **n** = moles of H⁺ or OH⁻ ions \Box mEq is a common unit used to express equivalents: **1 Eq = 1000 mEq**.

Acid Equivalent (Eq)

Eq = __ x moles of acid

Base Equivalent (Eq)

Eq = __x moles of base

EXAMPLE: Calculate number of Equivalents in each of the following:

a) 1 mole of H₃PO₄

b) 2.7 g of RbOH

Equivalent Weight

• Represents the mass (grams) of _____ Acid or Base Equivalent.

Equivalent Weight

Eq Weight =

EXAMPLE: Calculate the equivalent weight of H₂SO₄.

CONCEPT: ACID-BASE EQUIVALENTS

Normality

- Concentration of acid or base in aqueous solutions is represented by ______.
 - □ **Normality (N**): represents number of ______ per L of solution.
 - Recall: Molarity = mol/L

Normality (N) Normality = $\frac{\text{Equivalent}}{\text{L solution}}$

OR

Normality (N)	
Normality = n x	_

EXAMPLE: Calculate Normality of each of the following solutions:

a) 4.6 x 10⁻² M NaOH

b) 0.35 g of H₃PO₄ in 1 L

PRACTICE: Calculate mass (grams) needed for the following base equivalent: 0.18 mEq of Mg(OH)₂.

PRACTICE: Identify the acid that possesses an equivalent weight of 63 grams.

a. H₂C₂O₄

b. HCI

c. HNO₃

 $d. H_2CO_3$

PRACTICE: Determine volume (mL) needed to prepare a 0.73 g of Ca(OH)₂ solution with 1.25 N.