CONCEPT: BOND ENERGY

- Bond Energy (Bond Enthalpy; ΔH_{B.E.}): the amount of energy stored in a bond between atoms in a molecule.
 - \Box Bond Energy values can be used to calculate the _____ of reaction (ΔH_{Rxn}).
 - □ **Endothermic Process**: Energy is ______ to break a bond and a has a _____ sign.
 - □ **Exothermic Process**: Energy is ______ to form a bond and a has a _____ sign.

Enthalpy of Reaction Formulas

When given individual bond enthalpies (bond energies).

Enthalpy of Reaction Formula ($DH_{B.E.}^{o}$)

 $\triangle H_{Rxn}^{o}$ = Reactants – Products

When given the enthalpy of formation for a compound.

Enthalpy of Reaction Formula (DH_f°)

 $\triangle H_{Rxn}^0$ = Products – Reactants

EXAMPLE: The formation of ammonia is accomplished by the reaction between hydrogen and nitrogen gas.

Calculate the ΔH^{o}_{rxn} if the bond enthalpies of N \equiv N, H=H and N=H are 945 kJ/mol, 432 kJ/mol and 391 kJ/mol respectively.

- STEP 0: CHECK to see if the chemical equation is balanced and if not then do the necessary steps to balance it.
 - $\hfill\Box$ If the Lewis Dot Structures is not given, then you will have to draw them as well.
- STEP 1: For the reactants and products, multiply the coefficients of each bond-type with its bond enthalpy value, $DH_{B.E.}$.

STEP 2: Take both totals and place them into the enthalpy of reaction formula to determine DH_{Rxn}^o .

$$DH_{Rxn}^{o} = Reactants - Products = \begin{bmatrix} \\ \end{bmatrix} - \begin{bmatrix} \\ \end{bmatrix}$$

CONCEPT: BOND ENERGY

PRACTICE: Consider the following equation:

$$H_2S(g) + 3F_2(g) \longrightarrow SF_4(g) + 2HF(g)$$
 $DH = -1301$

Determine the bond enthalpy value for the F–S bond.

Standard Bond Energies		
Bonds	D H kJ/mol	
S–H	347	
F–H	565	
F-F	159	

PRACTICE: Use the bond energies to estimate the enthalpy of reaction for the combustion of 5 moles of acetylene:

Standard Bond Energies			
Bonds	D H kJ/mol	Bonds	D H kJ/mol
C–C	347	C=O	745
C=C	614	C≡O	1070
C≡C	839	0–0	204
C–H	413	O=O	498
C-O	358	O–H	467

$$2 C_2H_2(g) + 5 O_2(g) \longrightarrow 4 CO_2(g) + H_2O(g)$$