CONCEPT: HESS'S LAW

Rearrangement of Thermochemical Equations

- Recall, a thermochemical equation is a chemical equation that includes an enthalpy of reaction.
 - \Box The thermochemical equation and its enthalpy of reaction (ΔH_{rxn}), are ______ proportional.
 - This means that any change to the original reaction will cause the same change in the ΔH_{rxn} .

Original Reaction

2 Mg (s) + O₂ (g)
$$\rightarrow$$
 2 MgO (s) \triangle H = -1204 kJ

EXAMPLE: If the formation equation for boron trioxide is given as the following:

4 B (s) + **3** O₂ (g)
$$\longrightarrow$$
 2 B₂O₃ (s) $\triangle H_{rxn} = -2547 \text{ kJ}$

what will be the new enthalpy value when it is rearranged?

4 B₂O₃ (s)
$$\longrightarrow$$
 8 B (s) + **6** O₂ (g) $\triangle H_{rxn} = ?$

PRACTICE: Calculate the ΔH_{rxn} for the following thermochemical equation:

S (s) +
$$\frac{3}{2}$$
 O₂ (g) \longrightarrow SO₃ (s) $\triangle H_{rxn} = ?$

When given the following:

$$2 S (s) + 3 O_2 (g) \longrightarrow 2 SO_3 (s) \Delta H_{rxn} = -296.8 \text{ kJ}$$

CONCEPT: HESS'S LAW

Applying Hess's Law

- Many reactions cannot be carried out in a single step, but instead require multiple steps to get the final product.
 - \Box Hess's Law states that the $\triangle H_{rxn}$ of an overall reaction is the sum of the $\triangle H^{\circ}$ values of these multiple steps.

Partial Reaction 1:
$$XeF_2$$
 (s) \longrightarrow Xe (g) $+$ F_2 (g) $\triangle \mathbf{H}^{\circ} = +$ 123 kJ

Partial Reaction 2:
$$Xe(g) + 2F_2(g) \longrightarrow XeF_4(s)$$
 $\triangle H^\circ = -262 \text{ kJ}$

Overall Reaction:
$$XeF_2(s) + F_2(g) \longrightarrow XeF_4(s) \triangle H_{rxn} = -139 \text{ kJ}$$

EXAMPLE: Calculate the ΔH_{rxn} for overall reaction

CO (g) + NO (g)
$$\longrightarrow$$
 CO₂ (g) + $\frac{1}{2}$ N₂ (g) $\triangle H_{rxn} = ?$

when given the following set of partial reactions:

$$CO_2 (g) \longrightarrow CO (g) + \frac{1}{2} O_2 (g) \Delta H^\circ = 283.0 \text{ kJ}$$

$$N_2 (g) + O_2 (g) \rightarrow 2 NO (g)$$
 $\Delta H^{\circ} = 180.6 \text{ kJ}$

STEP 1: Start with the first compound in the overall equation and locate it in the set of partial reactions.

- □ Compound from partial reaction must match (______, , _____) with the one from the overall equation.
 - This may require you to reverse, multiply or divide the partial reaction, which will also affect ΔH°.
- STEP 2: Keep moving onto the next compound in the overall equation until you locate all compounds in partial reactions.

STEP 3: Combine the partial reactions and cross out reaction intermediates if present.

 $\hfill \square$ Reaction Intermediates: Compounds that look the same, with one as a reactant and the other a product.

STEP 4: Add up all the ΔH° values to obtain ΔH_{rxn} of the overall reaction.

CONCEPT: HESS'S LAW

PRACTICE: Calculate the ΔH_{rxn} for

$$S(s) + \frac{3}{2}O_2(g) \longrightarrow SO_3(g) \triangle H_{rxn} = ?$$

Given the following set of reactions:

$$\frac{1}{2}$$
 S (s) + $\frac{1}{2}$ O₂ (g) $\longrightarrow \frac{1}{2}$ SO₂ (g) $\triangle H^{\circ} = -296.8$ kJ

PRACTICE: Calculate the ΔH_{rxn} for

$$CIF(g) + F_2(g) \longrightarrow CIF_3(g)$$
 $\triangle H_{rxn} = ?$

Given the following reactions:

$$Cl_2O(g) + F_2O(g) \longrightarrow 2 CIF(g) + O_2(g)$$
 $\triangle H^{\circ} = -167.4 \text{ kJ}$

$$4 \text{ CIF}_3 (g) + 4 \text{ O}_2 (g) \longrightarrow 2 \text{ CI}_2 \text{O} (g) + 6 \text{ F}_2 \text{O} (g)$$
 $\triangle \text{H}^{\circ} = 682.8 \text{ kJ}$

$$2 F_2 (g) + O_2 (g) \longrightarrow 2 F_2 O (g)$$
 $\Delta H^{\circ} = -181.7 \text{ kJ}$