CONCEPT: EQUIVALENTS

- Equivalents are used to measure individual _____ amount present in body fluids and intravenous solutions.
 - □ **Equivalent (Eq):** number of moles of _____ that one ion contributes to a solution.
 - Eq equals to 1 mol of positive or negative _____ -Eq can only be a _____ value

- •To calculate number of equivalents of an ion, we simply multiply ion charge by number of _____ of ion present.
 - \Box *mEq* is a common unit used to express equivalents: **1 Eq = 1000 mEq**.

Equivalent (Eq)

Eq = ion charge x moles of ion

EXAMPLE: Calculate number of Equivalents in each of the following:

a) 1 mole of Ca²⁺

b) 2 moles of PO₄³-

Normality

- Concentration of ions in aqueous solutions is represented by *Normality*.
 - □ **Normality (N):** represents number of ______ per L of solution.

Normality (N) Normality = Equivalent L solution

EXAMPLE: Calculate the Normality of 0.35 mole of Mg²⁺ ions present in a 300 mL of blood.

CONCEPT: EQUIVALENTS

PRACTICE: Calculate mass (grams) needed for the following ion equivalent: 1.5 mEq of Na⁺ ions.

- a. 3.4 g
- b. 15.0 g
- c. 0.065 g
- d. 0.034 g

PRACTICE: The concentration of Cl⁻ ion in blood is approximately 105 mEq/L. How many milliliters of blood would be needed to obtain 1.4 g of Cl⁻ ions?

- a. 110 mL
- b. 380 mL
- c. 75 mL
- d. 240 mL

PRACTICE: An intravenous saline solution contains 140 mEq/L of Na⁺. How many mEq of Na⁺ are present in 750 mL of the solution?

a. 525 mEq

- b. 5.36 mEq
- c. 105 mEq
- d. 187 mEq

PRACTICE: Calculate the normality (mEq/L) of potassium ions in a 500 mL Ringer's solution that is $2.0 \times 10^{-3} \,\mathrm{M}$ in potassium ions.

a. 2.0 mEq/L

- b. 0.200 mEq/L
- c. 2.5 mEq/L
- d. 0.250 mEq/L