CONCEPT: EQUIVALENTS - Equivalents are used to measure individual _____ amount present in body fluids and intravenous solutions. - □ **Equivalent (Eq):** number of moles of _____ that one ion contributes to a solution. - Eq equals to 1 mol of positive or negative _____ -Eq can only be a _____ value - •To calculate number of equivalents of an ion, we simply multiply ion charge by number of _____ of ion present. - \Box *mEq* is a common unit used to express equivalents: **1 Eq = 1000 mEq**. # Equivalent (Eq) **Eq =** ion charge x moles of ion **EXAMPLE:** Calculate number of Equivalents in each of the following: a) 1 mole of Ca²⁺ b) 2 moles of PO₄³- ### **Normality** - Concentration of ions in aqueous solutions is represented by *Normality*. - □ **Normality (N):** represents number of ______ per L of solution. # Normality (N) Normality = Equivalent L solution **EXAMPLE:** Calculate the Normality of 0.35 mole of Mg²⁺ ions present in a 300 mL of blood. ## **CONCEPT: EQUIVALENTS** PRACTICE: Calculate mass (grams) needed for the following ion equivalent: 1.5 mEq of Na⁺ ions. - a. 3.4 g - b. 15.0 g - c. 0.065 g - d. 0.034 g **PRACTICE:** The concentration of Cl⁻ ion in blood is approximately 105 mEq/L. How many milliliters of blood would be needed to obtain 1.4 g of Cl⁻ ions? - a. 110 mL - b. 380 mL - c. 75 mL - d. 240 mL **PRACTICE:** An intravenous saline solution contains 140 mEq/L of Na⁺. How many mEq of Na⁺ are present in 750 mL of the solution? a. 525 mEq - b. 5.36 mEq - c. 105 mEq - d. 187 mEq **PRACTICE:** Calculate the normality (mEq/L) of potassium ions in a 500 mL Ringer's solution that is $2.0 \times 10^{-3} \,\mathrm{M}$ in potassium ions. a. 2.0 mEq/L - b. 0.200 mEq/L - c. 2.5 mEq/L - d. 0.250 mEq/L