| CONCEPT: | BALANCING | CHEMICAL | EQUATIONS | (SIMPLIFIED) | |-----------|------------------|----------|-----------|--------------| | OCHOLI I. | | | | | - When balancing always make sure the _____ and ____ of atoms on both sides of the arrow are equal. - □ In a balanced equation the **numbers** are referred to as ______. $$2 H_2 (g) + 1 O_2 (g) \longrightarrow 2 H_2 O (g)$$ **EXAMPLE**: Write the balanced equation for the following by inserting the correct coefficients in the blanks: STEP 1: Set up a list for the elements that are **Reactants** and another list for the elements that are **Products**. - STEP 2: Start from the top and going down both lists determine how many of each element is present. - □ If a polyatomic ion is present on both sides, treat it as a _____ unit. - **STEP 3:** Start from the top and going down both lists begin balancing each element to ensure they match. - □ Sometimes you may have a decimal or a fraction as a coefficient and so must multiply the equation by ______. ## **CONCEPT:** BALANCING CHEMICAL EQUATIONS (SIMPLIFIED) PRACTICE: Write the balanced equation for the following by inserting the correct coefficients in the blanks. $__$ Na₃PO₄ (aq) + $__$ Ca(NO₃)₂ (aq) \longrightarrow $__$ NaNO₃ (aq) + $__$ Ca₃(PO₄)₂ (aq) **PRACTICE:** Determine the total sum of the coefficients after balancing the following equation. $__C_2H_5SH(g) + __O_2(g) \longrightarrow __CO_2(g) + __H_2O(I) + __SO_2(g)$