CONCEPT: SUBATOMIC PARTICLES (SIMPLIFIED)

- The 3 **subatomic particles** share key differences and similarities in their masses and charges.
 - □ **Amu**: Shorthand for *atomic mass unit* and is used to calculate the relative mass of an atom or subatomic particle.
 - 1 AMU = one-twelfth the mass of a carbon-12 atom.
 - 1 AMU = 1 _____ (Da) named after John Dalton, a "Father of Chemistry".
 - 1 AMU = _____ kg.

Subatomic Particle	Actual Mass (kg)	Relative Mass (amu)	Relative Charge
Neutron	1.67493 x 10 ⁻²⁷		0
Proton	1.67262 x 10 ⁻²⁷		+1
Electron	0.00091 x 10 ⁻²⁷		-1

EXAMPLE: Osmium, one of the densest elements on earth, has an actual mass of 190.23 grams. According to the table above, what is its value in terms of atomic mass units?

PRACTICE: According to the table above, how many electrons are needed to have a combined mass of 1.0465 x 10⁻²⁵ kg?

c)
$$8.8192 \times 10^{25}$$

d)
$$3.2235 \times 10^{22}$$

PRACTICE: How many atoms are contained in 0.230 g of sodium, Na? The mass of one sodium atom is 23.99 amu.