CONCEPT: LIMITING REAGENT

• Limiting Reagent: The reactant that is completely consumed in a reaction and determines the max amount of product.

□ ______ Yield: The maximum amount of product that can form from a chemical reaction.

- Also referred to as the _____ yield or ____ yield.
- □ ______ Reagent: The reactant that remains after the completion of the chemical reaction.
 - In order to determine which reactant is which we must work out the amounts of product each can make.

EXAMPLE: Chromium (III) oxide reacts with hydrogen sulfide (H₂S) gas to form chromium (III) sulfide and water:

$$Cr_2O_3(s) + 3H_2S(g) \longrightarrow Cr_2S_3(s) + 3H_2O(l)$$

What is the mass of chromium (III) sulfide formed when 14.20 g Cr₂O₃ reacts with 12.80 g H₂S?

STEP 1: Convert the Given quantities into moles of Given.

- $\hfill \square$ If any compound(s) is said to be in excess, then just _____.
- STEP 2: Do a Mole to Mole comparison to convert moles of Given of each reactant into moles of Unknown.
- STEP 3: If necessary, convert the moles of Unknown into the final desired units.

STEP 4: Compare the final amounts of the Unknown to determine the theoretical yield.

□ The _____ amount is for the limiting reagent, while the ____ amount is for the excess reagent.

CONCEPT: LIMITING REAGENT

PRACTICE: Acrylonitrile (C_3H_3N) is the starting material for many synthetic carpets and fabrics. It is produced by the following reaction:

$$2 C_3H_6 (g) + 2 NH_3 (g) + 3 O_2 (g) \longrightarrow 2 C_3H_3N (g) + 6 H_2O (g)$$

If 12.0 g C₃H₆, 10.0 g NH₃, and 5.0 g O₂ react, what mass of acrylonitrile can be produced, assuming 100% yield?

PRACTICE: The reaction between solid aluminum and iron (III) chloride can generate temperatures reaching 3000 °C and is used in welding metals.

$$2 \text{ Al} + \text{Fe}_2\text{O}_3 \longrightarrow \text{Al}_2\text{O}_3 + 2 \text{ Fe}$$

If 150 g of Al are reacted with 432 g of Fe₂O₃, what is the mass of the excess reactant remaining?