CONCEPT: TOLLENS' AND BENEDICT'S TEST

Oxidation Reactions

• Recall, oxidation uses an oxidizing agent to add as many _____ bonds as possible without breaking any C–C bonds.

EXAMPLE: Determine which of the following compounds cannot undergo an oxidation reaction?

- a) Hexanal
- b) Benzaldehyde
- c) Acetone
- d) Ethanal
- e) Propanal

Tollens' Test

• Tests for the presence of an _____ within a basic solution.

□ Known as the _____ Test because of the formation of a silver precipitate.

• The oxidizing agent can be represented in different ways as a combination of _____ and ____.

EXAMPLE: Draw the carboxylic acid produced when 2,3-dimethylpentanal is submerged in a Tollens' solution.

CONCEPT: TOLLENS' AND BENEDICT'S TEST

Benedict's Test

- Like Tollens' Test, tests for the presence an _____ within a basic solution.
 - □ A positive test reduces _____ to ____ in the formation of a brick-red Cu₂O precipitate.

EXAMPLE: Determine the product formed when 3-ethylheptanal is treated with a basic copper (II) solution.

PRACTICE: Determine the product formed when the following compound undergoes the Benedict's test.

CONCEPT: TOLLENS' AND BENEDICT'S TEST

PRACTICE: Under the following test, which structure represents the product formed?

$$\begin{array}{c} O \\ H \end{array} \begin{array}{c} Ag_2O \\ NH_4OH \end{array}$$

PRACTICE: What was the starting material that created the following carboxylic acid product?

PRACTICE: Draw the product when 2,3,5-trimethyloctanal is submerged in a basic copper (II) solution.