CONCEPT: SECONDARY PROTEIN STRUCTURE

• The type of structure that results from _____ of the atoms in the backbone of a protein.

□ Involves the connection between the _____ of one peptide with the _____ of another.

EXAMPLE: Determine which of the following amino acid pairs could potentially perform hydrogen bonding between their respective R groups?

a) Gly and Ser

b) Asp and Glu

c) Val and Leu

d) Asp and Arg

PRACTICE: How many hydrogen bonding pairs are possible when the following two peptides interact?

a) 3

b) 5

c) 4

d) 6

e) 1

CONCEPT: SECONDARY PROTEIN STRUCTURE

Alpha-Helix

- Secondary structures give rise to 2 types of repeating patterns.
- The backbone of a single protein chain into a spiral-like staircase.
 - □ Stabilized by -bonding between *distant* amino acids on the same chain.

Primary

Structure

Secondary

Structure

EXAMPLE: Determine which of the following statements represents a 2° structure for a protein.

- a) Creation of peptide bonds.
- b) The attractive force between the H atom of a peptide bond and the O atom of a peptide bond.
- c) Amide bond formation in the creation of an amino acid chain.
- d) Ionic bond formation between the R side chains of alanine and valine.

Alpha Helix Spiral Shape

- The spiral-like staircase adopts a right-handed (______) shape.
 - □ The hydrogen bonds lie _____ the helix and the amino acid R groups lie _____ the helix because of spacing.

- The hydrogen bonding of the amide hydrogen with the carbonyl oxygen happens _____ residues further on the helix.
 - ☐ The result is every ____ turn of the helix contains on average ____residues

EXAMPLE: What is the maximum number of turns for an alpha helix that contains 72 residues?

- a) 15 turns
- b) 18 turns
- c) 72 turns
- d) 20 turns
- e) 6 turns

CONCEPT: SECONDARY PROTEIN STRUCTURE

Beta-Pleated Sheet

- Secondary structure consisting of _____ or more β -strands oriented side by side.
 - □ Named "pleated" because of their _____- structure.
 - $\ \square$ R side chains extend _____ or ____ to the β -sheet.

EXAMPLE: Which of the following statements is true of β -sheets?

- a) Interchanging between an α -helix and a β -sheet is a key feature of a primary structure.
- b) Their interior is characterized by hydrogen bonding between amide hydrogens and carbonyl oxygens.
- c) Their interior is characterized by R side chains interactions.
- d) The R side chains extend inward to ensure greater packing of the peptides.

PRACTICE: Which of the following statements is true in regard to the peptide strand shown?

- a) The β -sheet defines the primary structure of the peptide strand.
- b) The C-Terminal end possesses an α -helix.
- c) Along with its α -helix counterpart, the β -sheet is mainly stabilized by backbone hydrogen bonds.
- d) The α -helix and the β -sheet are connected together through an ionic bond.

