CONCEPT: BALANCING REDOX REACTIONS (S	SIMPLIFIED)
--	-------------

- Balancing Redox Reactions requires a new approach that accounts for the transfer of electrons between reactants.
 - □ Redox reactions not only balance the atoms of elements, but also _____ and ____.

Half-Reactions

- Balancing a redox reaction begins with identifying its half reactions.
 - □ **Half Reaction:** Either the oxidation or reduction reaction portion of a redox reaction.
 - □ Usually a half reaction is obtained by identifying the elements that are found as _____ & ____

EXAMPLE: Identify the half reactions from the following redox reaction.

$$Mn^{5+}$$
 (aq) + Cl^{-} (aq) - Mn^{2+} (aq) + Cl_{2} (g)

Balancing Redox Reactions

EXAMPLE: Balance the following redox reaction.

Ni (s) +
$$Co^{3+}$$
 (aq) \longrightarrow Ni²⁺ (aq) + Co^{2+} (aq)

STEP 1: Break the full redox reaction into 2 half reactions.

STEP 2: Balance the overall charge by adding **electrons** to the more _____ charged side of each half reaction.

□ If the number of electrons of both half reactions differ then ______ to get the lowest common multiple.

STEP 3: Combine the half reactions and ______ the electrons on both sides.

CONCEPT: BALANCING REDOX REACTIONS (SIMPLIFIED)

PRACTICE: Balance the following redox reaction.

$$Fe^{2+}$$
 (aq) + $Cr(s)$ \longrightarrow $Fe(s)$ + Cr^{3+} (aq)

PRACTICE: Balance the following redox reaction.

$$Ce^{4+}$$
 (aq) + Sn^{2+} (aq) \longrightarrow Ce^{3+} (aq) + Sn^{4+} (aq)

PRACTICE: Balance the following redox reaction.

$$Cl_2$$
 (aq) + KI (aq) \longrightarrow KCI (aq) + I_2 (aq)