| CONCEPT: BALANCING REDOX REACTIONS (S | SIMPLIFIED) | |--|-------------| |--|-------------| - Balancing Redox Reactions requires a new approach that accounts for the transfer of electrons between reactants. - □ Redox reactions not only balance the atoms of elements, but also _____ and ____. ## **Half-Reactions** - Balancing a redox reaction begins with identifying its half reactions. - □ **Half Reaction:** Either the oxidation or reduction reaction portion of a redox reaction. - □ Usually a half reaction is obtained by identifying the elements that are found as _____ & ____ **EXAMPLE:** Identify the half reactions from the following redox reaction. $$Mn^{5+}$$ (aq) + Cl^{-} (aq) - Mn^{2+} (aq) + Cl_{2} (g) ## **Balancing Redox Reactions** **EXAMPLE:** Balance the following redox reaction. Ni (s) + $$Co^{3+}$$ (aq) \longrightarrow Ni²⁺ (aq) + Co^{2+} (aq) **STEP 1:** Break the full redox reaction into 2 half reactions. **STEP 2:** Balance the overall charge by adding **electrons** to the more _____ charged side of each half reaction. □ If the number of electrons of both half reactions differ then ______ to get the lowest common multiple. **STEP 3:** Combine the half reactions and ______ the electrons on both sides. ## **CONCEPT:** BALANCING REDOX REACTIONS (SIMPLIFIED) **PRACTICE:** Balance the following redox reaction. $$Fe^{2+}$$ (aq) + $Cr(s)$ \longrightarrow $Fe(s)$ + Cr^{3+} (aq) **PRACTICE:** Balance the following redox reaction. $$Ce^{4+}$$ (aq) + Sn^{2+} (aq) \longrightarrow Ce^{3+} (aq) + Sn^{4+} (aq) **PRACTICE:** Balance the following redox reaction. $$Cl_2$$ (aq) + KI (aq) \longrightarrow KCI (aq) + I_2 (aq)