CONCEPT: ANAEROBIC RESPIRATION

Limitations of Anaerobic Respiration

- Without O₂ as _____ electron acceptor, ETC is not able to produce _____
 - □ Instead, pyruvate is redirected through _____ in the cytosol.

- Fermentation: generation of energy in the absence of oxygen (________ efficient than aerobic respiration).
 - □ Utilized by animals and certain microorganisms.
 - □ In the absence of _____ (oxidizing agent), fermentation regenerates _____ allowing glycolysis to continue.
 - **Recall:** Glycolysis only makes ____ ATP vs 20+ from aerobic respiration.

EXAMPLE: Why is anaerobic respiration (fermentation) in eukaryotic cells inefficient?

- a) No metabolic processes are able to continue without oxygen.
- b) Electron Transport Chain is not able to produce ATP without oxygen as final electron acceptor.
- c) Glycolysis only produces 2 ATP molecules per 1 glucose molecule.
- d) Overproduction of NAD+ causes glycolysis to shut down.

CONCEPT: ANAEROBIC RESPIRATION

Lactate Fermentation

- Process occurs in animal _____ cells during strenuous activity.
- Pyruvate is ______ by lactate dehydrogenase to ______.
 - □ 1 NADH is oxidized to 1 _____.

Alcohol Fermentation

- Process by which certain _____ and yeast convert pyruvate to _____ and CO₂.
- Pyruvate is reduced to ethanol by a _____ step process.
 - □ 1 C atom is lost as _____.

□ 1 NADH is oxidized to 1 _____.

EXAMPLE: Pyruvate is converted into ethanol and CO₂ by which of the following enzymatic reactions?

- a) Pyruvate is directly converted to ethanol by alcohol dehydrogenase.
- b) Pyruvate is converted to acetaldehyde by pyruvate decarboxylase, then reduced to ethanol by alcohol dehydrogenase.
- c) Pyruvate is converted to lactate by lactate dehydrogenase, followed by conversion to ethanol by lactate reductase.
- d) Pyruvate is converted to ethanol by oxidative decarboxylation.

CONCEPT: ANAEROBIC RESPIRATION

PRACTICE: How is aerobic respiration different from anaerobic respiration?

- a) Anaerobic respiration produces ethanol or lactate, while aerobic respiration produces water and more CO₂.
- b) Fermentation takes place in the mitochondrial matrix, whilst pyruvate oxidation takes place in the cytoplasm of the cell.
- c) Aerobic respiration produces less ATP than anaerobic.
- d) Aerobic respiration can be described as reduction reactions, while anaerobic is oxidation reactions.
- e) Both fermentation and pyruvate oxidation produce NAD+.

PRACTICE: Select statement that explains importance of conversion of NADH to NAD+ during anaerobic respiration.

- a) Cells rely on glycolysis to produce ATP and NAD+ in the absence of oxygen.
- b) Conversion of glucose to pyruvate in glycolysis requires NAD+ as an electron acceptor.
- c) Allows for conversion of glucose to Acetyl CoA in the absence of oxygen.
- d) Regeneration of NAD+ through fermentation ensures that glycolysis will come to a halt.

PRACTICE: Circle the correct type of respiration under which:

- a) Pyruvate converted to lactate (aerobic or anaerobic)
- b) Glucose converted to pyruvate (aerobic or anaerobic)
- c) Pyruvate converted to Acetyl CoA (aerobic or anaerobic)
- d) Pyruvate converted to ethanol (aerobic or anaerobic)