CONCEPT: SC	LUBILITY P	RODUCT CONS	TANT (Ksp)					
• Recall, solubility is a chemical property that deals with the ability of a to become dissolved in a								
□ Solubility Product Constant (Ksp): The equilibrium constant that deals with the solubility of so								
	- Solubility	can also be refer	red to as	or		·		
l	Ksp =	_ soluble solid.			□	_ Ksp = _	soluble solid.	
EXAMPLE: V	Vhich substa	nce is the most s	oluble?					
a) AgCl	$Ksp = 1.6 \times 10^{-10}$							
b) MgCO₃	-							
c) CaSO ₄	Ksp = 7.1 x	10-5						
d) CuS	Ksp = 8.5 x	10-45						
□ Fron	nic solid with this equilibr ilibrium exp	A ₂ B ₃ (s) ium equation, its ression: The ration equilibrium exp	equilibrium exp io of the concen ression ignores	pression car trations of _	+ i be dete and	ermined.	over	
EXAMPLE : P	Provide the ed	ıuilibrium expres	sion for calcium	ı nitrate, Ca	(NO ₃) ₂ .			
STEP 1: Write the equilibrium equation by breaking up the ionic solid into its ions.								
	C	a(NO ₃) ₂ (s) —			+		
_		e equilibrium exp		-		-	ion.	
	K	sp =		= -				

CONCEPT: SOLUBILITY PRODUCT CONSTANT (Ksp) Calculating Ksp from Solubility If the solubility or _____ concentrations of ions within an ionic solid are known, the Ksp can be calculated. EXAMPLE: Calculate the Ksp value for silver phosphate, Ag₃PO₄, which has a solubility of 1.8 x 10⁻¹²² at 25°C. STEP 1: Write the equilibrium equation by breaking up the ionic solid into its _____ ions. STEP 2: Write the equilibrium expression based on the equilibrium equation. STEP 3: Make concentrations of the ions are equal to their _____ multiplied by the _____ variable. STEP 4: Substitute the given solubility value for the _____ variable and solve for Ksp.

Calculating Solubility from Ksp

• Conversely, the solubility of an ionic solid can be determined when its Ksp value is already known.

EXAMPLE: The Ksp value for strontium fluoride, SrF₂, is 7.9 x 10⁻¹⁰ at 25°C. Calculate its solubility in M.

STEP 1: Write the equilibrium equation by breaking up the ionic solid into its ______ ions.

STEP 2: Write the equilibrium expression based on the equilibrium equation.

STEP 3: Solve for the solubility variable _____ based on the given Ksp value.

CONCEPT: SOLUBILITY PRODUCT CONSTANT (Ksp) PRACTICE: Determine the equilibrium expression of the barium nitride solid.
PRACTICE: Manganese (V) hydroxide has a measured solubility of 3.4 x 10 ⁻⁵ M at 25°C. Calculate its Ksp value.
PRACTICE: The Ksp value for strontium fluoride, SrF ₂ , is 7.9 x 10 ⁻¹⁰ at 25°C. Calculate its solubility in g/L.