#### **CONCEPT:** GIBBS FREE ENERGY (SIMPLIFIED)

• Gibbs Free Energy ( $\Delta$ G) is a measure of \_\_\_\_\_ change of a chemical or physical process that can be used to do \_\_\_\_.  $\square$  Sign of  $\triangle G$  determines \_\_\_\_\_ of a reaction.

| Spontaneity of Reaction |
|-------------------------|
|                         |
|                         |
|                         |
|                         |

**EXAMPLE:** If  $\Delta G$  is small and positive, which of the following statements is true?

- a) the forward reaction is spontaneous and system is far from equilibrium
- b) the forward reaction is spontaneous and system is near equilibrium
- c) the reverse reaction is spontaneous and system is far from equilibrium
- d) the reverse reaction is spontaneous and system is near equilibrium

## **Predicting Spontaneity**

• When sign of  $\Delta G$  is unknown, spontaneity of a reaction can be predicted from \_\_\_\_\_ of Enthalpy ( $\Delta H$ ) and Entropy ( $\Delta S$ ).



**EXAMPLE:**  $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$  At 25°C,  $\Delta H^\circ = -92.50$  kJ. Which of the following statements is(are) true?

- a. This is an endothermic reaction.
- b. If the temperature is increased, the ratio of [PCl<sub>5</sub>] / [PCl<sub>3</sub>] [Cl<sub>2</sub>] will increase.
- c.  $\Delta S^{\circ}$  for this reaction is negative.
- d. ΔG° for this reaction has to be negative at all temperatures.

## **CONCEPT:** GIBBS FREE ENERGY (SIMPLIFIED)

**PRACTICE:** What are the signs of  $\Delta H$ ,  $\Delta S$  and  $\Delta G$  for the spontaneous conversion of a solid into gas?



**PRACTICE**: You calculate the value of  $\Delta G$  for a chemical reaction and get a positive value. Which would be the most accurate way to interpret this result?

- a) If a mixture of reactants and products is created and left to equilibrate, the equilibrium mixture will contain more reactant than product.
- b) If a mixture of reactants and products is created, we cannot say anything about its composition at equilibrium but we can say it will reach equilibrium very rapidly.
- c) The reaction will not occur under any circumstances.
- d) If a mixture of reactants and products is created and left to equilibrate, the equilibrium mixture will contain more product than reactant.

**PRACTICE**: Consider the combustion of butane gas and predict the signs of  $\Delta S$ ,  $\Delta H$  and  $\Delta G$ .

 $C_4H_{10}(g) + 13/2 O_2(g) \rightarrow 4 CO_2(g) + 5 H_2O(g)$ 

## **CONCEPT:** GIBBS FREE ENERGY (SIMPLIFIED)

# **Calculations of Gibbs Free Energy**

• Gibbs Free Energy formula allows us to calculate the value of  $\Delta G$  (kJ) by using  $\Delta H$  (kJ),  $\Delta S$  (J/K) and T (K) values.

Gibbs Free Energy Formula  $\Delta G = \Delta H - T\Delta S$ 

**EXAMPLE:** For a particular reaction,  $\Delta H = -111.4$  kJ and  $\Delta S = -25.0$  J/K.

Calculate  $\Delta G$  for this reaction at 298° K. What can be said about the spontaneity of the reaction at 298° K?

- a) The system is at equilibrium
- b) The system is spontaneous in the reverse direction.
- c) The system is spontaneous as written.

**PRACTICE:** A particular reaction has  $\Delta G = -350 \text{ kJ}$  and  $\Delta S = -350 \text{ J/K}$  at 24C°. How much heat will be released/absorbed?

**PRACTICE:** For a reaction in which  $\Delta H = 125$  kJ and  $\Delta S = 325$  J/K, determine the temperature in Celsius above which the reaction is spontaneous.

- a) 385 °C
- b) 273 °C
- c) 112 °C
- d) 405 °C
- e) 25 °C