• The citric acid cycle is a sequence of ____ biochemical reactions.

Phase A – Citrate Formation

• Phase A consists of the _____ reaction of the pathway.

1 Citrate Formation: acetyl group from acetyl CoA combines with oxaloacetate to produce citrate.

EXAMPLE: How many carbon atoms are added to oxaloacetate to produce citrate?

- a) One
- b) Two
- c) Three
- d) Four

Phase B - Succinyl CoA Formation

- Phase B consists of the pathway's reactions ____, ___, and ____.
 - □ Produces ___ moles each of NADH and CO₂.

- 2 Isomerization: the 3° –OH in citrate must be isomerized to a 2° –OH for ______
 - $\hfill\Box$ The enzyme _____ isomerizes citrate to isocitrate.

- **3** Oxidation & Decarboxylation (1st): the enzyme isocitrate _____ oxidizes isocitrate to α-ketoglutarate.
 - □ 1 NAD+ is reduced to 1 □ 1 C atom is lost as □ .

 COO⁻ COO⁻

4 Oxidation & Decarboxylation (2^{nd}): α -ketoglutarate _____ oxidizes α -ketoglutarate to succinyl CoA.

□ 1 NAD+ is reduced to 1

EXAMPLE: For each of the following reactions described below, identify a corresponding step of the citric acid cycle.

- a) _____ Oxidation of α -ketoglutarate produces succinyl CoA.
- Oxaloacetate is converted to citrate.
- c) ____ An oxidation reaction is catalyzed by isocitrate dehydrogenase.
- d) ____ Aconitase catalyzes the isomerization of citrate to isocitrate.

PRACTICE: Which enzyme oxidizes α -ketoglutarate in step 4 of the citric acid cycle?

- a) isocitrate dehydrogenase
- b) α -ketoglutarate oxidase
- c) succinyl CoA synthase
- d) α -ketoglutarate dehydrogenase

PRACTICE: Which two steps of the citric acid cycle produce CO₂?

- a) 1 and 3
- b) 3 and 4
- c) 2 and 4
- d) 2 and 3

• Phase C consists of the pathway's reactions ____ to ___.

- **(5) Hydrolysis:** the enzyme succinyl CoA ______ hydrolyzes succinyl CoA to succinate.
 - $\hfill\Box$ Energy _____ from the hydrolysis reaction produces GTP.
 - _____ of GTP provides energy to produce ATP.

- **6 Oxidation**: the enzyme succinate dehydrogenase oxidizes succinate to fumarate.
 - □ 1 FAD is reduced to 1

• Dehydrogenases utilize FAD to convert _____ bonds to _____ bonds.

EXAMPLE: Which one of the following statements is incorrect about the citric acid cycle?

- a) Reaction 5 of the cycle converts succinyl CoA to succinate.
- b) Oxidation of succinate in reaction 6 produces fumarate.
- c) Phase C of the citric acid cycle does not result in the loss of any C atoms.
- d) Energy required for the hydrolysis of succinyl CoA comes from GTP.
- 7 Hydration: the enzyme fumarate _____ (fumarase) converts fumarate to malate by adding H₂O.

- (8) Oxidation: the enzyme malate dehydrogenase oxidizes malate to oxaloacetate.
 - □ 1 NAD+ is reduced to 1

EXAMPLE: For each of the following reactions described below, identify a corresponding step of the citric acid cycle.

- a) ____ Malate dehydrogenase catalyzes the oxidation of malate to oxaloacetate.
- b) ____ Succinate loses two H atoms to yield fumarate.
- c) _____ Succinyl CoA undergoes hydrolysis to produce succinate.
- d) ____ Malate is produced from hydration of fumarate.

PRACTICE: Which one of the following enzymes catalyzes the addition of water to the C=C bond in fumarate?

- a) Fumarate reductase
- b) Malate synthase
- c) Fumarase (Fumarate hydratase)
- d) Malate dehydrogenase

PRACTICE: How many final high-energy molecules are produced in phase C of the citric acid cycle?

- a) 2
- b) 4
- c) 1
- d) 3

Citric Acid Cycle Summary

• The citric acid cycle degrades acetyl groups to produce ____ and high-energy molecules.

MEMORY TOOL 1: Krebs cycle is A Big Crab.

MEMORY TOOL 2: ___ Owls and __ ___ Hawk in a circus ring.

- □ ___ oxidation reactions each in phases 📵 and 💽.
- □ Oxidation reactions yield and/or

- Hydrolysis reaction yields

	Krebs Cycle (Citric Acid)
Start Molecule	2 Acetyl-CoA
0-0-0	
ATP	
FADH ₂	
NADH	
End Molecule	Oxaloacetate

MEMORY TOOL 3:

u____er trees in a forest, there lived 5 $_$ nts and 6 $_$ lies.

u___er __'s in a __ __, there lived 5 __nts and 6 __lies.

MEMORY TOOL 4: C1 O2 ____

EXAMPLE: How many reactions in the citric acid cycle produce high-energy molecules?

a) 4

b) 5

c) 3

d) 6

PRACTICE: Complete the following net equation for one turn of the citric acid cycle.

Acetyl CoA + ___H₂O + 3 NAD+ + FAD + GDP + ____ CO₂

PRACTICE: Which reaction of the citric acid cycle produces ATP directly?

a) Reaction 3

b) Reaction 5

c) Reaction 4

d) Reaction 6

e) Reaction 8

f) None of these

Remembering Citric Acid Cycle

• Each reaction of the citric acid cycle can be remembered by memorizing the intermediate (______) names.

MEMORY TOOL 1: ____ford ____y IceCrates, KeGs, & ____h ___nt__in ____ulent ___oamy ___ilk.

 T 	he name of the enz	yme can be	predicted by	/ knowing	the substrate and the _	of reaction.
-----------------------	--------------------	------------	--------------	-----------	-------------------------	--------------

HINT 1: Reaction 1 (Citrate formation) is catalyzed by citrate ______.

HINT 2: Reaction 2 (Citrate isomerization) is catalyzed by aconitase.

HINT 3: Reactions 3, 4, 6, & 8 are _____ reactions catalyzed by dehydrogenases.

HINT 4: Reaction 5 is hydr_____ and reaction 7 is hydr____.

EXCEPTION: Reaction 5 is catalyzed by a _____ instead of a hydrolase.

EXAMPLE: Write the name for the enzyme that catalyzes the first reaction of the citric acid cycle.

- a) Isocitrate synthase
- b) Oxaloacetate reductase
- c) Malate dehydrogenase
- d) Citrate synthase

PRACTICE: Write the name for the substrate, enzyme, and product of reaction 6 of the citric acid cycle.

- a) Succinyl CoA, succinyl CoA synthase, succinate
- b) Succinate, succinate dehydrogenase, and fumarate
- c) Succinyl CoA, succinate dehydrogenase, and fumarate
- d) Fumarate, fumarase, and malate

PRACTICE: Identify the two reactions that involve oxidation and decarboxylation.

- a) Reactions 1 and 5
- b) Reactions 3 and 6
- c) Reactions 6 and 8
- d) Reactions 2 and 7
- e) Reactions 3 and 4

PRACTICE: Write the name of the substrate and the enzyme of reaction 8 of the citric acid cycle.

- a) Oxalate, oxalate oxidase
- b) Malate, malate dehydrogenase
- c) Succinate, succinate dehydrogenase
- d) Fumarate, fumarase

PRACTICE: What is the name of the enzyme for the reaction that produces a GTP molecule in the citric acid cycle?

- a) Succinyl CoA synthase
- b) Succinate dehydrogenase
- c) α -ketoglutarate dehydrogenase
- d) Fumarate hydratase

PRACTICE: Which reactions of the citric acid cycle produce NADH?

- a) Reactions 1, 2, and 8
- b) Reactions 2, 4, and 6
- c) Reactions 2, 5, and 7
- d) Reactions 3, 4, and 8
- e) Reactions 3, 4, and 6