CONCEPT: SOLUBILITY RULES

- Solubility: A chemical property that deals with the ability of a solute to become dissolved in a solvent.
 - □ **Soluble**: Refers to a solute that can be dissolved into _____ when placed in a solvent.

$$AlBr_3$$
 (s) \longrightarrow

□ **Insoluble**: Refers to a solute that cannot be dissolved when placed in a solvent.

EXAMPLE: How many ions will the following soluble compound produce: Na₂SO₄?

Solubility Rules

• The Solubility Rules are a convenient set of guidelines to help us determine if a compound will be soluble or insoluble.

MEMORY TOOL

" The bank robber was GANA CASH his loot, but the COPS stopped him "

- GANA CASH is used for Soluble Ionic Solutes, with the exceptions creating an insoluble solute called a
 - □ Exceptions: "SHhhh! Keep quiet about the cash."

	Soluble Compounds						
	Group	Structures	Exceptions	Explanation			
G	 	<u>Li, Na, K</u>	None				
A		$C_2H_3O_2^-$	None				
N		NO ₃	None				
A		NH ₄ ⁺	None				
C A		CIO ₃ ⁻ /CIO ₄ ⁻	None				
S H		SO ₄ ²⁻ F, Cl, Br, I	СВЅ НАР ру НАР ру	□ Creates a solid when connected to: C, B, S, H, A, P □ Creates a solid when connected to: H, A, P			

EXAMPLE: According to the solubility rules, which of the following ionic compounds will be insoluble?

- a) NaNO₃
- b) Ca(C₂H₃O₂)₂
- c) BaSO₄
- d) (NH₄)₂CO₃
- e) CoClO₄

CONCEPT: SOLUBILITY RULES

• COPS is used for Insoluble Ionic Solutes, with the exceptions creating a ______ ionic compound.

□ Exceptions: "Oh Snap! It's the cops!"

Insoluble Compounds						
Group	Structures	Exceptions	Explanation			
C	CO ₃ ²⁻ / CrO ₄ ²⁻	None				
0 <u>*</u>	O ²⁻ / OH ⁻	CBS	□ Creates a soluble aqueous compound when connected to: C , B , S			
P	PO ₄ ³	None				
S ≥	S ²⁻	CBS	□ Creates a soluble aqueous compound when connected to: C , B , S			

EXAMPLE: Based on the chart shown above, determine which of the following substances will be soluble in water.

a) Al(OH)₃

b) $Zn_3(PO_4)_2$

c) Ag₂CO₃

d) CaS

e) MgCrO₄

PRACTICE: Based on your understanding of the solubility rules, which of the following ionic compounds will be insoluble?

a) Zinc chloride

b) Manganese (V) chlorate

c) Lead (II) sulfate

d) Gallium acetate

PRACTICE: Which pair of compounds is insoluble in water?

a) PbSO $_4$ and Pb $_3$ (PO $_4$) $_2$

b) Na₂S and CuS

c) (NH₄)₂SO₄ and AgI

d) $AgNO_{\rm 3}$ and $KNO_{\rm 3}$