CONCEPT: HEN	IRY'S LAW CALCULATIONS	
• The	(solubility) of a dissolved gas can be determined from its Henry's Law Constant and partial pre	ssure.
□ Henry'	's Law Constant (): solubility of a gas at a fixed temperature in a particular solvent in	(M)
	Henry's Law Formula	
	□ S _{Gas} = solubility of the gas in (M). S _{Gas} =• = Henry's Law Constant in □ = Partial pressure of the gas in	
EXAMPLE: Cal at 3.29 atm?	Iculate the solubility of carbon dioxide gas, CO_2 , when its Henry's Law Constant is 8.20 x 10^2 M/atm	
□ Used v	Point Form) form of Henry's Law Formula illustrates how changes in can affect gas solubility. when dealing with pressure(s) and solubilities for a given gas. nis formula, the units for solubility can be in or other units that are in per	
□ VVIUI UI		·
	Henry's Law Formula (Two Point Form)	
	□ = Initial Partial Pressure of the gas	

EXAMPLE: At a pressure of 2.88 atm the solubility of dichloromethane, CH_2Cl_2 , is 0.384 mg/L. If the solubility decreases to 0.225 mg/L, what is the new pressure?

□ ____ = Final Partial Pressure of the gas

CONCEPT: HENRY'S LAW CALCULATIONS
PRACTICE: Henry's Law Constant for nitrogen in water is 1.67 x 10 ⁻⁴ M ◆ atm ⁻¹ . If a closed canister contains 0.103 M
nitrogen, what would be its pressure in atm?
PRACTICE: At 0°C and 1.00 atm, as much as 0.84 g of O ₂ can dissolve in 1.0 L of water. At 0°C and 4.00 atm, how many
grams of O ₂ dissolve in 1.0 L of water?
PRACTICE: The atmospheric pressure in a lab is calculated as 1.3 atm. If oxygen gas contributes 62% of this atmospheric
pressure, determine its mass (in g) dissolved at room temperature in 25 L of water. The Henry's Law Constant for oxygen in water at this temperature is 5.3 x 10 ⁻⁵ M/atm.
water at this temperature is 0.0 × 10 Milatin.