| CONCEPT: HEN | IRY'S LAW CALCULATIONS | | |----------------------------------|---|--------| | • The | (solubility) of a dissolved gas can be determined from its Henry's Law Constant and partial pre | ssure. | | □ Henry' | 's Law Constant (): solubility of a gas at a fixed temperature in a particular solvent in | (M) | | | Henry's Law Formula | | | | □ S _{Gas} = solubility of the gas in (M). S _{Gas} =• = Henry's Law Constant in □ = Partial pressure of the gas in | | | EXAMPLE: Cal at 3.29 atm? | Iculate the solubility of carbon dioxide gas, CO_2 , when its Henry's Law Constant is 8.20 x 10^2 M/atm | | | □ Used v | Point Form) form of Henry's Law Formula illustrates how changes in can affect gas solubility. when dealing with pressure(s) and solubilities for a given gas. nis formula, the units for solubility can be in or other units that are in per | | | □ VVIUI UI | | · | | | Henry's Law Formula (Two Point Form) | | | | □ = Initial Partial Pressure of the gas | | **EXAMPLE:** At a pressure of 2.88 atm the solubility of dichloromethane, CH_2Cl_2 , is 0.384 mg/L. If the solubility decreases to 0.225 mg/L, what is the new pressure? □ ____ = Final Partial Pressure of the gas | CONCEPT: HENRY'S LAW CALCULATIONS | |---| | PRACTICE: Henry's Law Constant for nitrogen in water is 1.67 x 10 ⁻⁴ M ◆ atm ⁻¹ . If a closed canister contains 0.103 M | | nitrogen, what would be its pressure in atm? | | | | | | | | | | | | | | | | | | PRACTICE: At 0°C and 1.00 atm, as much as 0.84 g of O ₂ can dissolve in 1.0 L of water. At 0°C and 4.00 atm, how many | | grams of O ₂ dissolve in 1.0 L of water? | | | | | | | | | | | | | | PRACTICE: The atmospheric pressure in a lab is calculated as 1.3 atm. If oxygen gas contributes 62% of this atmospheric | | pressure, determine its mass (in g) dissolved at room temperature in 25 L of water. The Henry's Law Constant for oxygen in water at this temperature is 5.3 x 10 ⁻⁵ M/atm. | | water at this temperature is 0.0 × 10 Milatin. | | | | | | | | | | | | |