CONCEPT: THE EQUILIBRIUM CONSTANT The equilibrium constant, K, is a number equal to the ratio of ______ to ____ at a given temperature. - Its magnitude tells us how far to the left or to the right our chemical equation lies at a particular temperature. - If K is greater than 1 then _____ are favored over _____ and ____ direction is favored. - If K is less than 1 then _____ are favored over ____ and ___ direction is favored. K = The equilibrium constant, K, takes into account all states of matter except: _____ and _____. **EXAMPLE:** Write the equilibrium expression for the following reaction. a) $$2 N_2 O_5$$ (aq) \longrightarrow 4 NO_2 (aq) + O_2 (aq) b) 2 PbO (s) + $$O_2$$ (g) \longrightarrow 2 PbO₂ (s) c) $$I_2(s) + 3 XeF_2(s) \implies 2 IF_3(s) + 3 Xe(g)$$ **PRACTICE:** State which is greater in amount: reactants or products, based on the given equilibrium constant, K. a) $$N_2(g) + O_2(g) = 2 NO(g)$$ $$K = 1.0 \times 10^{20}$$ $$K = 2.2 \times 10^{-22}$$ c) 2 BrCl (g) $$\longrightarrow$$ Br₂ (g) + Cl₂ (g) ## **PRACTICE:** THE EQUILIBRIUM CONSTANT **PRACTICE:** The decomposition of nitrogen monoxide can be achieved under high temperatures to create the products of nitrogen and oxygen gas. 6 NO (aq) $$\longrightarrow$$ 3 N₂ (aq) + 3 O₂ (aq) a) What is the equilibrium equation for the reaction above? b) Write the equilibrium expression for the reverse reaction. **PRACTICE:** The equilibrium constant, K, for the 2 NO (g) + O₂ (g) $\stackrel{\frown}{=}$ 2 NO₂ (g) is 6.9 x 10². What is the [NO] in an equilibrium mixture of gaseous NO, O₂ and NO₂ at 500 K that contains 1.5 x 10⁻² M O₂ and 4.3 x 10⁻³ M NO₂?