CONCEPT: THE EQUILIBRIUM CONSTANT

The equilibrium constant, K, is a number equal to the ratio of ______ to ____ at a given temperature.

- Its magnitude tells us how far to the left or to the right our chemical equation lies at a particular temperature.
- If K is greater than 1 then _____ are favored over _____ and ____ direction is favored.
- If K is less than 1 then _____ are favored over ____ and ___ direction is favored.

K =

The equilibrium constant, K, takes into account all states of matter except: _____ and _____.

EXAMPLE: Write the equilibrium expression for the following reaction.

a)
$$2 N_2 O_5$$
 (aq) \longrightarrow 4 NO_2 (aq) + O_2 (aq)

b) 2 PbO (s) +
$$O_2$$
 (g) \longrightarrow 2 PbO₂ (s)

c)
$$I_2(s) + 3 XeF_2(s) \implies 2 IF_3(s) + 3 Xe(g)$$

PRACTICE: State which is greater in amount: reactants or products, based on the given equilibrium constant, K.

a)
$$N_2(g) + O_2(g) = 2 NO(g)$$

$$K = 1.0 \times 10^{20}$$

$$K = 2.2 \times 10^{-22}$$

c) 2 BrCl (g)
$$\longrightarrow$$
 Br₂ (g) + Cl₂ (g)

PRACTICE: THE EQUILIBRIUM CONSTANT

PRACTICE: The decomposition of nitrogen monoxide can be achieved under high temperatures to create the products of nitrogen and oxygen gas.

6 NO (aq)
$$\longrightarrow$$
 3 N₂ (aq) + 3 O₂ (aq)

a) What is the equilibrium equation for the reaction above?

b) Write the equilibrium expression for the reverse reaction.

PRACTICE: The equilibrium constant, K, for the 2 NO (g) + O₂ (g) $\stackrel{\frown}{=}$ 2 NO₂ (g) is 6.9 x 10². What is the [NO] in an equilibrium mixture of gaseous NO, O₂ and NO₂ at 500 K that contains 1.5 x 10⁻² M O₂ and 4.3 x 10⁻³ M NO₂?