
CONCEPT: CYCLIC STRUCTURES OF MONOSACCHARIDES

- Monosaccharides exist as cyclic hemiacetals in aqueous solutions.
 - □ Cyclization takes place when the penultimate alcohol reacts with the C1 _____ group.

- **Anomers:** epimers produced by cyclization of monosaccharides.
 - □ α-anomer: anomeric –OH and C6 CH₂OH on the _____ sides.
 - \Box β -anomer: anomeric -OH and C6 CH_2OH on the _____ side.

EXAMPLE: Draw a Haworth projection for β -D-galactose.

Step 1: Number the Fischer projection and rotate it to turn it on its side.

Step 2: _____ the CH₂OH group clockwise, keeping the carbonyl group in the far-____ corner.

Step 3: Rotate _____ so CH₂OH faces up, bringing –OH group close to the carbonyl group.

Step 4: Close the ring to form the cyclic hemiacetal and assign α or β to the anomeric –OH group.

CONCEPT: CYCLIC STRUCTURES OF MONOSACCHARIDES

PRACTICE: Draw a Haworth projection for α -D-altrose.

D-altrose

PRACTICE: D-ribose is an aldopentose sugar that is found in the DNA. It commonly exists as a five-membered β anomer. Draw D-ribose in its cyclic hemiacetal form.

D-ribose