CONCEPT: CYCLIC STRUCTURES OF MONOSACCHARIDES - Monosaccharides exist as cyclic hemiacetals in aqueous solutions. - □ Cyclization takes place when the penultimate alcohol reacts with the C1 _____ group. - **Anomers:** epimers produced by cyclization of monosaccharides. - □ α-anomer: anomeric –OH and C6 CH₂OH on the _____ sides. - \Box β -anomer: anomeric -OH and C6 CH_2OH on the _____ side. **EXAMPLE:** Draw a Haworth projection for β -D-galactose. **Step 1:** Number the Fischer projection and rotate it to turn it on its side. **Step 2:** _____ the CH₂OH group clockwise, keeping the carbonyl group in the far-____ corner. **Step 3:** Rotate _____ so CH₂OH faces up, bringing –OH group close to the carbonyl group. **Step 4:** Close the ring to form the cyclic hemiacetal and assign α or β to the anomeric –OH group. ## **CONCEPT:** CYCLIC STRUCTURES OF MONOSACCHARIDES **PRACTICE:** Draw a Haworth projection for α -D-altrose. D-altrose **PRACTICE:** D-ribose is an aldopentose sugar that is found in the DNA. It commonly exists as a five-membered β anomer. Draw D-ribose in its cyclic hemiacetal form. D-ribose