
CONCEPT: REVIEW OF METABOLISM

- Overall, metabolism is seen as _____ (degrading larger molecules) and _____ (synthesize larger molecules).
 - □ These different macromolecules have metabolic pathways that are ______ by common metabolites.

EXAMPLE: Which of the following statements is true?

- a) Lipid and Protein metabolism provide the only catabolic pathways to acetyl CoA formation.
- b) A transaminase is the class of enzyme that catalyzes transamination reactions.
- c) When glycogen stores are at max levels, fatty acids are degraded for energy.
- d) Alanine and α -ketoglutarate reacting to form pyruvate and glutamate represents an oxidative deamination.

PRACTICE: Which of the following statements is incorrect?

- a) Ammonia molecules are converted to carbamoyl phosphate before entering the Urea Cycle.
- b) The production of urea requires the reaction between water and a glutamate molecule.
- c) The Urea cycle excretes urea as a waste material by using NH₄+ and aspartate as the sources of nitrogen.
- d) It requires 4 total ATP molecules to produce one urea molecule.

CONCEPT: REVIEW OF METABOLISM

PRACTICE: In the synthetic pathway of serine, 3-phosphoglycerate must first be converted into 3-phosphohydroxypyruvate.

- a) Condensation
- b) Reduction

- c) Transamination
- d) Oxidation

PRACTICE: Which of the following statements is incorrect?

Identify the type of reaction represented by this conversion.

- a) The products of a transamination reaction are a new amino acid and an α -keto acid.
- b) The ammonium ion produced in the liver must immediately be excreted as urea because of its toxicity.
- c) Glutamate converting to α -ketoglutarate and an ammonium ion represent an oxidative deamination reaction.
- d) Ammonia molecules directly enter the Urea Cycle to serve as the only nitrogen source.

PRACTICE: Determine whether each of the following is involved in Glycolysis (A), β -Oxidation (B), Transamination/Oxidative Deamination (C), or Urea Cycle (D).

- I. _____ Using alanine transaminase on alanine and α -ketoglutarate to form pyruvate and glutamate.
- II. _____ Phosphofructokinase or fructose-1,6-bisphosphate.
- III. _____ The continuous regeneration of Ornithine.
- IV. _____ Cleavage of a 2-carbon acetyl group.