

CONCEPT: INTRO TO BUFFERS

- Acid-Base Buffers are solutions which _____ drastic changes in pH by _____ additional acid or base.
 - A Buffer contains both _____ and _____, which neutralizes added _____ and _____ ions, respectively.

Buffer Creation

- There are _____ ways to create a Buffer:

Buffer Creation	
① Weak acid or base + _____	0.40 M NH_3 and 0.40 M NH_4^+ - ideal buffer: [weak] [conj.]
② Strong Acid + Weak Base - weak base needs to be _____ []	0.20 M HCl and _____ M CH_3NH_2
③ Strong Base + Weak Acid - weak acid needs to be _____ []	1.3 M KNH_2 and _____ M H_2SO_3

EXAMPLE: Select ALL pair(s) that could form a buffer solution.

a) $\text{CH}_3\text{CO}_2\text{H}$ and HF b) HNO_3 and NH_3 c) HCl and NaCl d) KOH and HCN e) NaBr and NaOH

PRACTICE: Which pairs of compounds are capable of making a buffer? Select all that apply.

a) 1.3 M LiOH and 1.7 M HCOOH c) 0.35 M $\text{CH}_3\text{CO}_2\text{H}$ and 0.34 M CH_3CO_2^-
b) 0.784 M NH_4^+ and 0.323 M HClO_4 d) 0.80 M HNO_3 and 0.15 M MgO