CONCEPT: BALANCING REDOX REACTIONS: ACIDIC SOLUTIONS
Balancing Redox Reactions requires a new approach that accounts for the transfer of electrons between reactants.
□ For Acidic Redox Reactions we generally have the presence of the ion.
□ Redox reactions not only balance the atoms of elements, but also and
Half-Reactions
 Balancing a redox reaction begins with identifying its half reactions.
□ Half Reaction: Either the oxidation or reduction reaction portion of a redox reaction.
□ Usually a half reaction is obtained by identifying the elements that are not or
EXAMPLE: Identify the half reactions from the following redox reaction. $\mathbf{MnO_4}^{-}(\mathbf{aq}) + \mathbf{H_2SO_3}(\mathbf{aq}) \longrightarrow \mathbf{Mn^{2+}}(\mathbf{aq}) + \mathbf{HSO_4}^{-}(\mathbf{aq})$
Balancing Acidic Redox Reactions
EXAMPLE: Balance the following redox reaction if it is found to be in an acidic solution.
NO_2^- (aq) + $Cr_2O_7^{2-}$ (aq) \longrightarrow Cr^{3+} (aq) + NO_3^- (aq)
STEP 1: Break the full redox reaction into 2 half reactions. □ Focus on the elements that are not oxygen or hydrogen to determine the 2 half-reactions.

STEP 2: For each half reaction, balance elements that are not oxygen or hydrogen.

STEP 3: For each half reaction, balance the number oxygens by adding ______.

STEP 4: For each half reaction, balance the number hydrogens by adding ______.

STEP 5: Balance the overall charge by adding **electrons** to the more _____ charged side of each half reaction.

□ If the number of electrons of both half reactions differ then multiply to get the lowest common multiple.

STEP 6: Combine the half reactions and cross out *reaction intermediates*.

□ **Reaction Intermediates**: Compounds that look the same, with one as a reactant and the other a product.

CONCEPT: BALANCING REDOX REACTIONS: ACIDIC SOLUTIONS

PRACTICE: Balance the following redox reaction in an acidic solution.

$$Cl_2(g) + S_2O_3^{2-}(aq) \longrightarrow Cl^{-}(aq) + SO_4^{2-}(aq)$$

PRACTICE: What is the coefficient of Fe³⁺ when the following reaction is balanced?

$$Bi^{3+}$$
 (aq) + Fe^{3+} (aq) + H_2O (I) \longrightarrow BiO_3^- (aq) + Fe^{2+} (aq) + H^+ (aq)