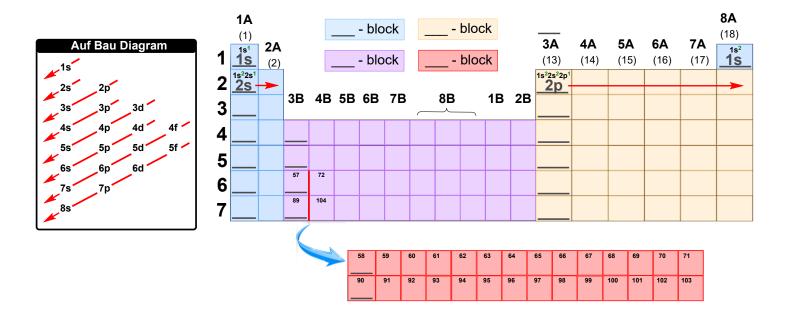
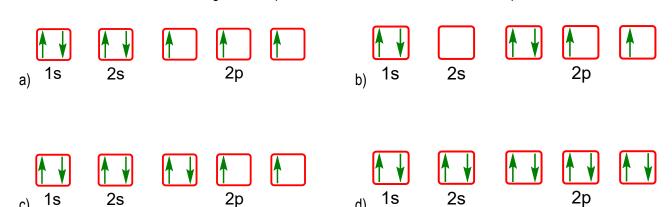
CONCEPT: THE ELECTRON CONFIGURATION (SIMPLIFIED)


Electron Orbital Diagrams

The visual representation	ntation of electr	ons within <mark>orbit</mark>	als.				
□ Degenerat	te orbitals: Ele	ectrons in the sa	me set of or	bitals having		_ energy –	filled using Hund's Rule
□ Hund's Ru	ule: Degenerate	e orbitals are firs	st	-filled before	e they are t	otally filled	l.
		Elect	ron Orbita	ıl Diagram	IS		
	Subshell	Sets of Orbitals				Max Electrons	
	S	↑↓					
	р	(
	d						
	f						
EXAMPLE: Properl	y fill in the orbi	tals of an atom t	hat possesse	es 8 electrons	s within its	d set of orl	oitals.
PRACTICE: Which e		ration represents	s a violation	of Hund's Ru	le?	1	2p
c) 1s 2s	↑	↑		d) 1s	2s	1	2p

CONCEPT: THE ELECTRON CONFIGURATION (SIMPLIFIED)


Ground State Electron Configurations

- Distributions of electrons (1s, 2s, 2p ...) within orbitals using the Auf Bau Principle.
 - □ **Auf Bau Principle:** Starting from 1s, electrons fill _____ energy orbitals before moving to _____ energy orbitals.

EXAMPLE: Write the ground state electron configuration for the following element: Fluorine (Z = 9)

PRACTICE: Which electron configuration represents a violation of the Auf Bau Principle?

CONCEPT: THE ELECTRON CONFIGURATION (SIMPLIFIED)

PRACTICE: Identify the element with the given electron orbital diagram.

a) Silicon

b) Fluorine

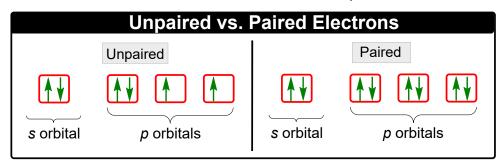
c) Sulfur

d) Chlorine

e) Phosphorus

PRACTICE: Write the electron configuration and electron orbital diagram for the following element:

Sulfur (Z = 16)


PRACTICE: Write the ground state electron configuration for the following element:

Magnesium (Z = 12)

CONCEPT: ELECTRON CONFIGURATION (SIMPLIFIED)

Unpaired vs Paired Electrons

- Recall, an orbital can hold a maximum of 2 electrons that pair up with opposite spins.
 - □ **Unpaired Electron:** When an orbital contains _____ with its own spin.
 - □ Paired Electron: When an orbital contains _____ each with its own spin.

EXAMPLE: Determine the number of unpaired electrons in vanadium.

a) 1

b) 2

c) 5

d) 3

PRACTICE: Which of the following atoms has no unpaired electrons?

a) Ca

b) N

c) C

d) F

PRACTICE: Which of the following atoms has the most unpaired electrons?

a) B

b) Si

c) P

d) O

e) Cl