

CONCEPT: PERIODIC TREND: ELECTRON AFFINITY (SIMPLIFIED)

• Electron Affinity (EA): Energy released from the addition of an electron to a gaseous atom or ion in _____.

- □ Exceptions: Electron affinity means the element will not readily accept an electron.
 - Reason: Uniquely stable electron configurations (arrangements).
- □ **Periodic Trend:** Electron affinity _____ moving from left to right across a period and going up a group.
- □ _____ EA: Electron not easily accepted □ ____ EA: Electron is easily accepted.

EXAMPLE: Which of the following halogens will release the most energy with the addition of an electron?

a) S

b) Ne

c) N

d) At

e) Br

PRACTICE: Determine which atom in the following set has the largest electron affinity: N, O, C, B, Ne

a) N

b) O

c) C

d) B

e) Ne

CONCEPT: PERIODIC TREND: ELECTRON AFFINITY (SIMPLIFIED)				
PRACTICE: Rank the f	ollowing elements in orde	er of increasing electron affinity: C	≽s, Hg, F, S	
PRACTICE: Which one of the following atoms has the least tendency to gain another electron?				
a) Neon	b) Oxygen	c) Chlorine	d) Sodium	e) Hydrogen
PRACTICE: Arrange th	e following elements fror	n greatest to least tendency to ac	cept an electron: F, Li, C	, O, Be