CONCEPT: INTRO TO HYDROCARBONS | Hydrocarbons | | | | | |--------------|---------------------------------------|-----------------|-----------------|--------------------| | Class | Bond Type | Example | Hybridization | Generic Formula* | | Alkanes | c—c | / | sp ³ | | | Alkenes | c=c | >> | | C _n H₂n | | Alkynes | с≡с | _= | sp | | | Cycloalkanes | c—c | \bigcirc | | | | Aromatics | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | C_nH_n | * n = # of C atoms **EXAMPLE**: Classify each of the following hydrocarbons as an alkane, alkene, or alkyne. a) / 0) c) ____ d) # **Saturated and Unsaturated Hydrocarbons** • Saturated: All _____ bonds; each C has max possible H atoms. • Unsaturated: At least on _____ or ____ bond; does not have max H atoms. **EXAMPLE**: Classify the following hydrocarbons as saturated or unsaturated: d) — # **CONCEPT: INTRO TO HYDROCARBONS PRACTICE**: Write the molecular formula for an alkane with 5 C atoms. **PRACTICE**: Write the molecular formula for an alkyne with 4 C atoms. PRACTICE: Which of the following molecular formulas might indicate an alkene? a) C₇H₁₆ b) C₆H₁₂ d) C₄H₁₀ c) C₅H₈ ## **CONCEPT: INTRO TO HYDROCARBONS** ### **Bond Rotation and Spatial Orientation** - The C–C bonds in alkanes can _____ freely. - The C____C bond in alkenes cannot rotate. - □ This leads to two different spatial orientations and two _____ compounds. **EXAMPLE**: Determine if the two structures below are the same or different compounds. - a) Same compound - b) Different compounds **PRACTICE**: Which of the following is not a valid bond rotation? d) $$\nearrow$$ c) $$H^{\text{NH}_2}$$