CONCEPT: INTRO TO HYDROCARBONS

Hydrocarbons				
Class	Bond Type	Example	Hybridization	Generic Formula*
Alkanes	c—c	/	sp ³	
Alkenes	c=c	>>		C _n H₂n
Alkynes	с≡с	_=	sp	
Cycloalkanes	c—c	\bigcirc		
Aromatics	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			C_nH_n

* n = # of C atoms

EXAMPLE: Classify each of the following hydrocarbons as an alkane, alkene, or alkyne.

a) /

0)

c) ____

d)

Saturated and Unsaturated Hydrocarbons

• Saturated: All _____ bonds; each C has max possible H atoms.

• Unsaturated: At least on _____ or ____ bond; does not have max H atoms.

EXAMPLE: Classify the following hydrocarbons as saturated or unsaturated:

d) —

CONCEPT: INTRO TO HYDROCARBONS PRACTICE: Write the molecular formula for an alkane with 5 C atoms. **PRACTICE**: Write the molecular formula for an alkyne with 4 C atoms. PRACTICE: Which of the following molecular formulas might indicate an alkene? a) C₇H₁₆ b) C₆H₁₂ d) C₄H₁₀ c) C₅H₈

CONCEPT: INTRO TO HYDROCARBONS

Bond Rotation and Spatial Orientation

- The C–C bonds in alkanes can _____ freely.
- The C____C bond in alkenes cannot rotate.
 - □ This leads to two different spatial orientations and two _____ compounds.

EXAMPLE: Determine if the two structures below are the same or different compounds.

- a) Same compound
- b) Different compounds

PRACTICE: Which of the following is not a valid bond rotation?

d)

$$\nearrow$$

c)
$$H^{\text{NH}_2}$$