Phase A – Activation

- Similar to glycolysis, fatty acid activation is an energy-_____ step.
 - ☐ The enzyme acyl CoA synth_____ catalyzes the conversion of fatty acid to fatty acyl CoA.
 - □ 1 ATP is hydrolyzed to 1 AMP and 2 Pi.
 - Equivalent to ____ ATP ____ ADF

Phase B - Transport

- Fatty acyl CoA cannot _____ cross the mitochondrial membrane.
 - □ The enzyme carnitine acyltransferase _____ the fatty acyl group from CoA to carnitine.
 - □ Fatty acyl carnitine moves from the cytosol into the mitochondrial matrix.
 - □ Fatty acyl carnitine reacts with CoA in the mitochondrial matrix to produce fatty acyl CoA.

EXAMPLE: Fatty acid activation requires hydrolysis: 1 ATP \rightarrow 1 AMP, how is this equivalent to 2 ATP \rightarrow 2 ADP?

- a) One AMP molecule carries an amount of energy equivalent to two ADP molecules.
- b) Conversion of 1 ATP to 1 AMP requires cleavage of 2 high-energy phosphoanhydride bonds.
- c) Hydrolysis of ATP to AMP is accompanied by oxidation of an electron carrier (such as NADH).
- d) None of the above.

Phase C - Oxidation

- The β -oxidation pathway consists of ____ repeated reactions.
 - □ Cleaves ___ carbons (Acetyl CoA) from the fatty acid chain in each cycle.
 - □ __ cycle of the pathway produces __ FADH₂, __ NADH, and __ acetyl CoA.

- **1)** β -Oxidation # 1: the enzyme acyl CoA ______ removes ___ H atoms from α and β -C atoms.
 - \Box Double bond forms between α and β -C atoms. \Box 1 FAD is reduced to 1
 - Fatty acyl CoA

 FAD

 FAD

 FADH2 H_3C — $(CH_2)_n$ — CH_2 — CH_2
- **2** Hydration: the enzyme enoyl CoA _____ adds H_2O to the α,β -double bond.
 - □ Places the –OH at the ____-carbon. □ _____acyl CoA is produced.
 - $H_{3}C (CH_{2})_{n} C COA$ Enoyl CoA hydratase trans-enoyl CoA $H_{3}C (CH_{2})_{n} C COA$ $H_{3}C (CH_{2})_{n} C COA$ 3-Hydroxyacyl CoA

EXAMPLE: Identify the α - and β -C atoms in the structure below and complete the reaction.

O

Acyl CoA dehydrogenase

- 3 β-Oxidation # 2: the enzyme 3-hydroxyacyl CoA _____ catalyzes the oxidation of _____ group.
 - □ Forms a ketone at the ____-carbon. □ 1 NAD+ is reduced to 1 _____.

- **4**) **Bond Cleavage:** the enzyme β -ketoacyl CoA _____ cleaves the bond between α and β -C atoms.
 - □ A _____ fatty acyl CoA is formed. □ 1 acetyl CoA is produced.

EXAMPLE: Identify each of the following statements about β -oxidation as true (T) or false (F).

- a) ____ Hydration of *trans*-enoyl CoA in the second reaction of β -oxidation produces 3-hydroxyacyl CoA.
- b) ____ The formation of β -ketoacyl CoA from the oxidation of 3-Hydroxyacyl CoA requires NAD⁺ as the coenzyme.
- c) ____ Bond cleavage to produce an acetyl CoA from β -ketoacyl CoA is catalyzed by β -ketoacyl CoA thiolase.
- d) ____ Oxidation of the fatty acyl CoA by FADH₂ produces a *cis*-double bond between α and β -C atoms.

PRACTICE: Which one of the following coenzymes is not a part of the β -oxidation pathway?

- a) ATP
- b) FADH₂
- c) CoQ
- d) CoA
- e) NADH

B-Oxidation Energy Output

- Energy output of the β -oxidation depends on the number of ____ atoms in the fatty acid.
 - □ Fatty acid activation is a _____-time expense of 2 ATPs.
 - □ Each cycle cleaves ___ C atoms. □ 1 FADH₂ and 1 NADH in each cycle.

EXAMPLE: Behenic acid is a long-chain fatty acid containing 22 C atoms. How many cycles of β -oxidation are required to completely degrade behenic acid?

- a) 10 cycles
- b) 11 cycles
- c) 9 cycles
- d) 12 cycles
- e) 22 cycles

PRACTICE: How many total FADH₂, NADH, and acetyl CoA molecules will be produced when stearic acid undergoes β -oxidation?

- a) 10 FADH2, 10 NADH, and 9 acetyl CoA
- b) 9 FADH2, 9 NADH, and 9 acetyl CoA
- c) 8 FADH2, 8 NADH, and 8 acetyl CoA
- d) 8 FADH2, 8 NADH, and 9 acetyl CoA

PRACTICE: Tripalmitin is a TAG formed by the esterification of glycerol with three palmitic acid molecules. How many acetyl CoA molecules will be produced by the complete oxidation of tripalmitin? (Hint: consider glycerol metabolism too)

- a) 22
- b) 24
- c) 25
- d) 26