CONCEPT: MEASURING RADIOACTIVITY

• Radiation can be measured in several different ways depending on which _____ is being measured.

Units of Radiation Measurement				
Common Unit	SI Unit	Property Measured		
Curie (Ci) 1 Ci = disintegration(s)/sec	Becquerel (Bq) 1 Bq = disintegration(s)/sec	Activity: events		
Roentgen (R) 1 R = charges/cm ³		Exposure: ionizing intensity of or rays		
Rad □ 1 Rad = J/g □ 1 Rad = 1 R	Gray (Gy) □ 1 Gy = J/kg □ 1 Gy = Rad	Energy absorbed by ————		
Rem Rems = rads x	Sievert (Sv) □ 1 Sv = Rem	Tissue		

□ Relative Biological Effectiveness (RBE): fac	intensity and	effect	
- X rays, γ rays, ß particles: RBE = 1	- α particles: RBE = 20		

EXAMPLE: The initial responders to the Chernobyl nuclear disaster were exposed to 23 Sv of radiation. Convert this value to rem.

PRACTICE: A typical chest X-ray exposes a patient to an effective dose of 0.09 mSv. How many Rad is this?

CONCEPT: MEASURING RADIOACTIVITY
PRACTICE: Two technicians in a nuclear laboratory were accidentally exposed to radiation. If one was exposed to 5 mG
and the other to 9 rad, which technician received more radiation?

PRACTICE: A solution of iodine-131, a radioisotope used in the diagnosis and treatment of thyroid disease, is found just prior to administration to have an activity of 1.08 x 10^6 Bq/mL. If 2.57 mL were delivered intravenously to the patient, what dose of I-131 (in μ Ci) did the patient receive?