CONCEPT: MOLALITY

Molality is depicted as moles of solute per kilograms of solvent:

Molality =
$$\frac{\text{Moles of solute}}{\text{kg of solvent}}$$

In the same way we can expand molarity the same approach can be applied to molality:

$$0.30 \text{ m NaCl} = \frac{0.30 \text{ mole NaCl}}{1 \text{ kg of solvent}}$$

EXAMPLE: A solution is prepared by dissolving 43.0 g potassium chlorate, KClO₃, in enough water to make 100.0 mL of solution. If the density of the solution is 1.760 g/mL, what is the molality of KClO₃ in the solution? MW of KClO₃ is 122.55 g/mol.

EXAMPLE: If the molality of glucose, C₆H₁₂O₆, in an aqueous solution is 2.56 what is the molarity? Density of the solution is 1.530 g/mL.

PRACTICE: What is the mass percent of NH₃ of a 1.25 m aqueous solution of NH₃?