CONCEPT: ELECTROLYTES (SI	<u>MPLIFIED)</u>	
Electrolytes represent compou	nds that conduct	when entering their ionic forms when dissolved or melted.
□ Recall, <i>conductivity</i> is a	physical property that de	als with the ability of electric current to flow through a material.
Strong Electrolytes		
Represent solutes that	dissolve into ions	s when placed in a solvent (water).
	NaCl (s)	
□ Strong Flootrolytos are	aguagus salubla ignic co	mounds (Salubility Pulos) strong saids or strong bases

Classification of Electrolytes					
Type of Electrolyte	Degree of Dissolution	Species in Solution	Conductivity	Examples	
				□ NaCl, NaNO ₃ , KBr, MgCl ₂	
Strong Electrolyte				□ HBr, HCl, HI, HNO ₃ , HClO ₄ , H ₂ SO ₄	
				□ NaOH, KOH, LiOH	

EXAMPLE: Write a balanced equation for the dissociation of the following strong electrolyte in water: Fe(NO₃)₃

CONCEPT: ELECTROLYTES (SIMPLIFIED)

Weak Electrolytes

Represent solutes that	dissolve into ions when placed in a solvent.
	HF (aq) —
□ The presence of revers	ible arrows indicates that we have a weak electrolyte

□ Weak electrolytes are either insoluble ionic compounds, *weak acids* or *weak bases*.

Classification of Electrolytes				
Type of Electrolyte	Degree of Dissolution	Species in Solution	Conductivity	Examples
Strong Electrolyte	Dissociates Completely	lons	Yes	□ NaCl, NaNO ₃ , KBr, MgCl ₂ □ HBr, HCl, HI, HNO ₃ , HClO ₄ , H ₂ SO ₄ □ NaOH, KOH, LiOH
Weak Electrolyte				□ CaSO ₄ , BaSO ₄ , CaS □ HF, CH ₃ CO ₂ H (acetic acid) □ Mg(OH) ₂ , NH ₃

 $\textbf{EXAMPLE:} \ \ \textbf{Benzoic acid,} \ \ C_6 H_5 COOH, \ \textbf{is a weak acid.} \ \ \textbf{Would you expect benzoic acid solution to contain:}$

a) only $C_6H_5COO^{\scriptscriptstyle -}$ and H^+

c) mostly C₆H₅COOH

b) only C₆H₅COOH

d) mostly C₆H₅COO- and H⁺

CONCEPT: ELECTROLYTES (SIMPLIFIED)

Non-Electrolytes

• Consist of molecular/covalent compounds that ______ dissolve into ions.

$$C_6H_{12}O_6$$
 (s) \longrightarrow

□ Examples include water, sugars, alcohols and other non-ionic compounds.

Non-Electrolytes				
	Sugars		Alcohols	
\square Covalent compounds with the formula of $C_n(H_2O)_n$.		□ Covalent compounds with C + H connected to OH.		
Glu	ıcose	Sucrose	Methanol	Phenol

Classification of Electrolytes					
Type of Electrolyte	Degree of Dissolution	Species in Solution	Conductivity	Examples	
Strong Electrolyte	Dissociates Completely	lons	Yes	□ NaCl, NaNO ₃ , KBr, MgCl ₂ □ HBr, HCl, Hl, HNO ₃ , HClO ₄ , H ₂ SO ₄ □ NaOH, KOH, LiOH	
Weak Electrolyte	Dissociates Partially	Mostly molecules some ions	Weakly	□ CaSO ₄ , BaSO ₄ , CaS □ HF, CH ₃ CO ₂ H (acetic acid) □ Mg(OH) ₂ , NH ₃	
Non-Electrolyte				□ C ₁₂ H ₂₂ O ₁₁ (sucrose), CH ₃ OH □ H ₂ O, H ₂ O ₂ , CH ₄ N ₂ O	

EXAMPLE: The dissolution of a compound is given by the reaction below:

Identify each of the following solutions as either electrolytic, weakly electrolytic or non-electrolytic.

CONCEPT: ELECTROLYTES (SIMPLIFIED)

PRACTICE: Each of the following reactions depicts a solute dissolving in water. Classify each solute as a strong electrolyte, a weak electrolyte or a non-electrolyte.

a)
$$PbSO_4$$
 (s) \longrightarrow $PbSO_4$ (aq)

b)
$$HC_2H_3O_2$$
 (aq) \longrightarrow H^+ (aq) + $C_2H_3O_2^-$ (aq)

c) CaS (s)
$$\longrightarrow$$
 Ca²⁺ (aq) + S²⁻ (aq)

PRACTICE: Which of the following represents a non-electrolyte?

a) (CH₃)₂NH₂

- b) NaOH
- c) HIO₃
- d) C₂H₅OH
- e) CsNH₂