CONCEPT: FREEZING POINT DEPRESSION

● The phenomenon when adding a solute to a pure solvent results in of the freezing point of the solvent.					
□ Normal Freezing Point	(): The freezing point of the solvent): The freezing point of the solventf		e addition of the solute.	
□ Freezing Point of Solution (): The freezing point of the solv		ent the addition of the solute.			
Freezing Point Depression					
A Freezing Point Depression Formula	• Variables		Constants		
Δ T _f =••	\square $\Delta \mathbf{T_f}$ = Change in Freezing Point	Solvent	Normal FP (°C)	k _f (°C/m)	
B Freezing Point of Solution FP = FP	= van't Hoff Factor = Freezing Point Constant of Solvent in = molality of solution in	Water Benzene, C ₆ H ₆ Chloroform, CHCl Ethanol, C ₂ H ₅ OH	3 - 63.5	1.86 5.12 0.68 0.99	

EXAMPLE: Calculate the freezing point of a solution containing 110.7 g glucose, C₆H₁₂O₆, dissolved in 302.6 g water.

PRACTICE: How many moles of ethylene glycol, $C_2H_6O_2$, must be added to 1,000 g of water to form a solution that has a freezing point of $-10^{\circ}C$?

CONCEPT: FREEZING POINT DEPRESSION
PRACTICE: An ethylene glycol solution contains 28.3 g of ethylene glycol, C ₂ H ₆ O ₂ in 97.2 mL of water. Calculate the
freezing point of the solution. The density of water 1.00 g/mL.
PRACTICE WILL COSE (C. J. C. J. J. C. AEL (C. J. J. C. C. J. C. J. J. J. C. J. J. J. C. J. J. J. C. J. J. J. J. C. J.
PRACTICE: When 825 g of an unknown is dissolved in 3.45 L of water, the freezing point of the solution is decreased by
2.89°C. Assuming that the unknown compound is a non-electrolyte, calculate its molar mass.
2.89°C. Assuming that the unknown compound is a non-electrolyte, calculate its molar mass.
2.89°C. Assuming that the unknown compound is a non-electrolyte, calculate its molar mass.
2.89°C. Assuming that the unknown compound is a non-electrolyte, calculate its molar mass.
2.89°C. Assuming that the unknown compound is a non-electrolyte, calculate its molar mass.
2.89°C. Assuming that the unknown compound is a non-electrolyte, calculate its molar mass.
2.89°C. Assuming that the unknown compound is a non-electrolyte, calculate its molar mass.
2.89°C. Assuming that the unknown compound is a non-electrolyte, calculate its molar mass.
2.89°C. Assuming that the unknown compound is a non-electrolyte, calculate its molar mass.
2.89°C. Assuming that the unknown compound is a non-electrolyte, calculate its molar mass.
2.89°C. Assuming that the unknown compound is a non-electrolyte, calculate its molar mass.
2.89°C. Assuming that the unknown compound is a non-electrolyte, calculate its molar mass.
2.89°C. Assuming that the unknown compound is a non-electrolyte, calculate its molar mass.
2.89°C. Assuming that the unknown compound is a non-electrolyte, calculate its molar mass.
2.89°C. Assuming that the unknown compound is a non-electrolyte, calculate its molar mass.