CONCEPT: BRONSTED LOWRY ACIDS & BASES In 1923, Johannes Brønsted and Thomas Lowry developed a new set of definitions for acids and bases. | According to the Bronsted-Lowry definition, acids are considered | and bases are | |---|---------------| | considered | | | Unlike Arrhenius acids and bases, they are not limited to aqueous solutions. | | | Every Arrhenius acid is a Brønsted-Lowry acid (and likewise for the bases). | | | Brønsted-Lowry acids and bases always occur in pairs called | | | EXAMPLE: Write the formula of the conjugate base for the following compound: HSO ₄ - | | | EXAMPLE: Write the formula of the conjugate acid for the following compound: $V_2O_5^{2-}$ | | | PRACTICE: Write the formula of the <u>conjugate base</u> for the following compound: | | | PRACTICE: Write the formula of the conjugate for the following compound: NH ₂ NH ₂ | | ## **PRACTICE:** BRONSTED LOWRY ACIDS & BASES **EXAMPLE:** Identify the acid, base, conjugate acid and conjugate base in the following reactions: - a) HF (aq) - H_2O (aq) F^- (aq) - H_3O^+ (aq) **EXAMPLE:** Identify the acid, base, conjugate acid and conjugate base in the following reactions: - a) CN (aq) - H₂O (aq) - HCN (aq) - OH (aq) **PRACTICE:** Which of the following is a Bronsted-Lowry acid? - a) CH₄ - b) HCN c) NH₃ d) Br₂ **PRACTICE:** Determine the chemical equation that would result when carbonate, CO₃²⁻, reacts with water. $$CO_3^{2-}$$ (aq) + H_2O (I) \frown CO_3^{-} (aq) + OH^{-}