
CONCEPT: ELECTRONIC STRUCTURE: ELECTRON SPIN

- An orbital can hold a maximum of _____ electrons that have opposite spins according to the Pauli Exclusion Principle.
 - □ Pauli Exclusion Principle: No 2 electrons found within an orbital can have the _____ electron spin.

- Electron Spin: Deals with the rotational spin of an electron inside an atomic orbital.
 - □ Start out filling an orbital with an electron that points _____ followed by the next one pointing _____.
 - An electron that *points up* has an electron spin value of _____ (clockwise).
 - An electron that *points down* has an electron spin value of _____ (counterclockwise).

EXAMPLE: Provide the *n* value, subshell letter, and electron spin for the highlighted electron in a 3rd principal level.

- a) n = 4, subshell = d, electron spin = -1/2
- b) n = 3, subshell = p, electron spin = +1/2
- c) n = 2, subshell = s, electron spin = +1/2
- d) n = 3, subshell = p, electron spin = -1/2

PRACTICE: Which of the following can represent the highlighted electron in a set of 5d orbitals.

- a) n = 5, subshell = f, electron spin = -1/2
- b) n = 4, subshell = s, electron spin = -1/2
- c) n = 5, subshell = d, electron spin = +1/2
- d) n = 5, subshell = p, electron spin = -1/2
- e) n = 5, subshell = s, electron spin = +1/2