CONCEPT: IONS AND THE OCTET RULE

- Tendency of Main Group Elements in achieving _____ valence electrons or a _____ outer shell by undergoing chemical reactions.
 - □ Main Group Metals lose electrons to be like the Noble Gas that is _____ them in the Periodic Table.
 - □ Non-Metals **gain** electrons to be like the Noble Gas that is _____ them in the Periodic Table.
 - Creates totally filled ____ and ____ subshells that lead to ____ stability and ____ further chemical reactivity.

EXAMPLE: How many electrons must the magnesium atom (Z =12) lose in order to obtain a filled outer shell?

a) 1

b) 3

c) 2

d) 5

Electron Configurations (Cations)

- With a metal cation, we first remove electrons from the shell number (*n* value).
 - \Box The *n* value provides the shell number or energy level of the electron.

$$1s^2$$
 $2s^2$ $2p^6$ $3s^2$ $3p^6$

EXAMPLE: Write the condensed electron configuration for the Na+ ion.

STEP 1: Provide the electron configuration for the neutral form of the element.

STEP 2: Begin removing electron(s) from the _____ numbered shell to obtain the desired charge.

□ Recall, each electron removed causes the ion charge to increase by _____.

CONCEPT: IONS AND THE OCTET RULE

Electron Configurations (Anions)

• With a non-metal anion, add an electron(s) to the orbitals with available space.

EXAMPLE: Write the full electron configuration for the N³⁻ ion.

STEP 1: Provide the electron configuration for the neutral form of the element.

STEP 2: Add electron(s) to the orbitals that can accommodate more electrons.

PRACTICE: Determine the electron configuration for the Cl⁻ ion.