CONCEPT: PERIODIC TREND: ATOMIC RADIUS (SIMPLIFIED)

1A

(1)

37 pm (Li)

152 pm

Na

186 pm

K)

227 pm

Rb

248 pm

Cs

265 pm

Fr 348 pm 283 pm

2

3

2A

(2)

Be

112 pm

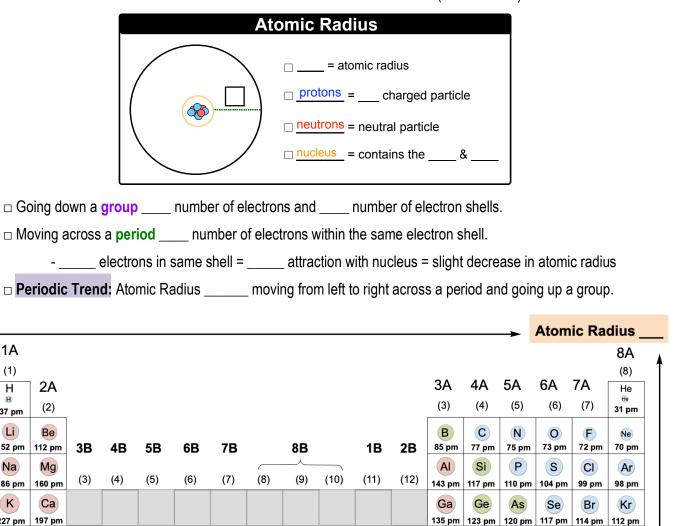
Mg

160 pm

Ca

197 pm

(Sr)


215 pm

Ba

222 pm

Ra

Atomic radius: Distance between an atom's nucleus and its outer electron shell (valence shell).

(In

166 pm

(TI)

171 pm

(Sn)

140 pm

(Pb)

175 pm

(Sb)

141 pm

(Bi

(Te)

143 pm

Po

155 pm | 164 pm | 142 pm

(1)

133 pm

(At)

Xe

131 pm

Rn

140 pm

☐ The electron arrangements for the transition metals makes their pattern less predictable.

EXAMPLE: Which one of the following atoms has the largest atomic radius?					
a) K	b) Rb	c) Y	d) Ca	e) Sr	

CONCEPT: PERIODIC TREND: ATOMIC RADIUS

PRACTICE: Which alkaline earth metal has the smallest atomic radius?

a) Ca

b) Rb

c) Na

d) Ra

e) Fr

PRACTICE: Which alkaline earth metal has the largest atomic radius?

a) Na

b) Ba

c) CI

d) Mg

e) Li

PRACTICE: Arrange the following atoms in order of decreasing atomic radius: Sr, Se, Ne, Ga

a) Ne > Se > Ga > Sr

b) Ga > Se> Ne > Sr

c) Sr > Ga > Se > Ne

d) Se > Ne > Ga > Se