CONCEPT: HEAT CAPACITY

• As you heat an object its temperature increases because heat is ______ proportional to its temperature change.

Heat–Temperature Relationship q ∝

EXAMPLE: If the temperature of a water bath goes from 25 K to 50 K, what can be said about the amount of heat?

- a) It will double
- b) It will remain the same
- c) It will be halved
- d) It will triple

Molar & Specific Heat Capacity

- Heat Capacity (___): The amount of heat required to change the temperature of a weighted substance.
 - □ **Specific Heat Capacity** (___): Amount of heat required to change the temperature of <u>1 g</u> of substance by 1 K.
 - □ **Molar Heat Capacity** (___): Amount of heat required to change the temperature of <u>1 mole</u> of substance by 1 K.

EXAMPLE: If 15.7 g of silver raises its temperature by 17.2 °C when it absorbs 6845.5 J, what is its molar heat capacity?

CONCEPT: HEAT CAPACITY

Rearranged Specific Heat Formula

• By rearranging the specific heat capacity given above we can solve for the amount of heat _____ or ____.

Specific Heat Capacity Formula q = mc△T

EXAMPLE: How much heat (in kJ) is released when 120.0 g H_2O goes from 90 °C to 45 °C? The specific heat capacity of H_2O is 4.184 J / g • °C.

PRACTICE: A sample of copper absorbs 3.53 kJ of heat, which increases the temperature by 25 °C, determine the mass (in kg) of the copper sample if the specific heat capacity of copper is $0.385 \text{ J/g} \cdot ^{\circ}\text{C}$.

CONCEPT: HEAT CAPACITY

PRACTICE: Based on their given specific heat capacities which compound would show the greatest temperature change upon absorbing 25.0 J of heat?

a) 250.0 g Al

b) 250.0 g Cu

c) 250.0 g ethanol

d) 250.0 g wood

Specific Heat Capacities	
Substances	Specific Heat Capacity C (J/g·°C)
Elements Aluminum, Al Copper, Cu	0.900 0.385
Compounds Ethanol, C_2H_5OH	2.460
<mark>Materials</mark> Wood	1.760

PRACTICE: 50.00 g of heated metal ore is placed into an insulated beaker containing 822.5 g of water. Once the metal heats up the final temperature of the water is 32.08 °C. If the metal gains 14.55 kJ of energy, what is the initial temperature of the water? The specific heat capacity of copper is 4.184 J / g • °C.