CONCEPT: RATE OF REACTION

_____ is the study of reaction rates, and tells us the change in concentrations of reactants or products over a period of time.

Although a chemical equation can help us calculate the theoretical yield from reactants, it can't tell us how fast it goes.

Looking at a chemical reaction in the simplest way can be seen as ______ breaking down to form

Reaction: A B

0 Seconds

30 Seconds

60 Seconds

90 Seconds

CONCEPT: RATE OF REACTION

- 1. Concentration: Molecules must ______ to react.
 - Increasing the number of molecules in a container, increases their _____ and thereby causes the rate to increase.

Reaction:
$$(A) + (B) \longrightarrow (A)(B)$$

2. **Surface Area**: The frequency of collisions increases with ______ surface area.

- 3. **Temperature**: Increasing the temperature **increases** the reaction rate by **increasing** the _____ and of collisions.
- 4. Catalyst: A catalyst increases the rate of a reaction by ______ the energy of activation.

Reaction Pathway