CONCEPT: ELECTRON GEOMETRY (SIMPLIFIED)

- The simplest system for geometrical shapes that focuses on the number of _____ around the central element.
 - □ Treats lone pairs and surrounding elements as the _____.

Electron Geometry			
Electron Groups	Orbital Shapes	Electron Geometry	Memory Tool
2	o =c=o		points in a straight
3	.Ö: .FFCI. Sn .CI.		Tri =
4	H C H H O H		Tetra =

EXAMPLE: Determine the electron geometry for the hydrogen sulfide molecule, H₂S.

PRACTICE: Determine the electron geometry for the carbon disulfide molecule, CS₂.

CONCEPT: ELECTRON GEOMETRY (SIMPLIFIED)

• Recall, many possible Lewis Dot Structures exist, but there are rules to draw the best structure.

EXAMPLE: Determine the electron geometry for the following molecule: CH₂O.

PRACTICE: Determine the number of electron groups for the following cation: AsBr₂+.

PRACTICE: Determine the electron geometry of the nitrogen atom within methylamine, CH₃NH₂.