CONCEPT: THE pH SCALE

To deal with incredibly small concentration values of [H⁺] and [OH-] we can use the pH scale.

• Under normal conditions, the pH scale operates within the range of _____ to ____ .

By taking the $-\log$ of [H $^+$] and [OH $^-$] we can find pH and pOH.

$$pH = -\log[H^+]$$

$$pOH = -log[OH^{-}]$$

$$p = -\log$$

By recognizing the relationship between [H+] and [OH-] with pH and pOH we can create new formula relationships.

$$pH = -\log[H^+]$$

$$pOH = -log[OH^{-}]$$

A species with a pH greater than 7 is classified as _____ and the [H+] is _____ than the [OH-].

• The _____ the base then the ____ the pH.

A species with a pH less than 7 is classified as _____ and the [H+] is _____ than the [OH-].

• The _____ the acid then the ____ the pH.

A species with a pH equal to 7 is classified as _____ and the [H+] is _____ than the [OH-].

By using – log with the equilibrium expression for water a relationship between pH and pOH can be created.

$$pH + pOH = 14$$

EXAMPLE: What is the hydroxide ion and hydronium ion concentration of an aqueous solution that has a pH equal to 6.12?

CONCEPT: THE pH SCALE

PRACTICE: Which of the following statements about aqueous solutions is/are true?

- a) For an basic solution the concentration of H₃O⁺ is greater than the concentration of OH ⁻.
- b) The pH of a neutral aqueous solution is 7.00 at all temperatures.
- c) An acidic solution under normal conditions has a pH value less than 7.00.
- d) If the concentration of H_3O^+ decreases then the concentration of OH^- will also decrease.
- e) The pH of aqueous solutions is less than 7.

EXAMPLE: A solution is prepared by dissolving 0.235 mol Sr(OH)₂ in water to produce a solution with a volume of 750 mL.

a) What is the [OH-]?

b) What is the [H+]?

PRACTICE: What is the K_W of pure water at 20.0°C, if the pH is 7.083?

a)
$$8.26 \times 10^{-8}$$

b)
$$6.82 \times 10^{-15}$$

c)
$$7.23 \times 10^{-14}$$

d)
$$1.00 \times 10^{-14}$$