CONCEPT: THE ELECTRON CONFIGURATION: EXCEPTIONS (SIMPLIFIED) ## **Electron Orbital Stability** • d subshell orbitals are most stable when they are half-filled or totally-filled with electrons because of symmetry. | Symmetrical Distribution | | | | | | | | | |--------------------------|----------------|--|--|--|--|--|--|--| | Half-Filled | Totally-Filled | | | | | | | | | d | d | | | | | | | | ## **Exceptions to Electron Configurations** • Starting from chromium, as the atomic number (Z) _____, exceptions to electron configurations can be observed. **MEMORY TOOL** Chromium (Z = 24) and there are 2 and 4. To get to the other column remember 2 skip next 4. | | 3B | 4B | 5B | 6B | 7B | | 8B | | 1B | 2B | |----------|----------|-----------|-----------|-----------|---------------------|---------------------|-----------|---------------------|----------|---------------------| | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | Period 4 | SC | Ti | 23
V | Cr | ²⁵
Mn | ²⁶
Fe | 27
Co | ²⁸
Ni | Cu | ³⁰
Zn | | Period 5 | 39
Y | Zr | Nb | Mo | Tc | 44
Ru | ⁴⁵
Rh | Pd | Ag | ⁴⁸
Cd | | Period 6 | ₅
La | 72
Hf | Ta | 74
W | ⁷⁵
Re | 76
Os | 77
Ir | 78
Pt | 79
Au | ⁸⁰
Hg | | Period 7 | 89
Ac | 104
Rf | 105
Db | 106
Sg | Bh | 108
Hs | 109
Mt | 110
Ds | Rg | Cn | □ An s orbital electron can be promoted to create half-filled orbitals with _____- elements. □ An s orbital electron can be promoted to create completely-filled orbitals with _____- elements. **EXAMPLE:** Based on the exceptions, provide the condensed electron configuration for the silver atom. **CONCEPT:** THE ELECTRON CONFIGURATION: EXCEPTIONS (SIMPLIFIED) **PRACTICE:** Illustrate the exception to the electron configuration of molybdenum. Mo (Z = 42) **PRACTICE:** Which of the following is the correct electron configuration of gold? - a) [Xe] 6s²4f¹⁴5d⁹ - b) [Ar] 5s14f145d10 - c) [Xe] 6s¹5d¹⁰ - d) [Xe] 6s¹4f¹⁴5d¹⁰ - e) [Xe] 6s¹4f¹5d¹⁰ **PRACTICE:** A comparison of the electron configurations of palladium (Pd) and silver (Ag) indicates that: - a) Ag has 2 more *d* electrons and the same number of *s* electrons as Pd. - b) Ag has 1 more *d* electron and the same number of *s* electrons as Pd. - c) Ag has 2 more *d* electrons and 1 less *s* electron than Pd. - d) Ag has 1 more *d* electron and 1 less *s* electron than Pd. - e) Ag has 1 more *d* electron and 1 more *s* electron than Pd.