CONCEPT: THE ELECTRON CONFIGURATION: EXCEPTIONS (SIMPLIFIED)

Electron Orbital Stability

• d subshell orbitals are most stable when they are half-filled or totally-filled with electrons because of symmetry.

Symmetrical Distribution								
Half-Filled	Totally-Filled							
d	d							

Exceptions to Electron Configurations

• Starting from chromium, as the atomic number (Z) _____, exceptions to electron configurations can be observed.

MEMORY TOOL Chromium (Z = 24) and there are 2 and 4. To get to the other column remember 2 skip next 4.

	3B	4B	5B	6B	7B		8B		1B	2B
	3	4	5	6	7	8	9	10	11	12
Period 4	SC	Ti	23 V	Cr	²⁵ Mn	²⁶ Fe	27 Co	²⁸ Ni	Cu	³⁰ Zn
Period 5	39 Y	Zr	Nb	Mo	Tc	44 Ru	⁴⁵ Rh	Pd	Ag	⁴⁸ Cd
Period 6	₅ La	72 Hf	Ta	74 W	⁷⁵ Re	76 Os	77 Ir	78 Pt	79 Au	⁸⁰ Hg
Period 7	89 Ac	104 Rf	105 Db	106 Sg	Bh	108 Hs	109 Mt	110 Ds	Rg	Cn

□ An s orbital electron can be promoted to create half-filled orbitals with _____- elements.

□ An s orbital electron can be promoted to create completely-filled orbitals with _____- elements.

EXAMPLE: Based on the exceptions, provide the condensed electron configuration for the silver atom.

CONCEPT: THE ELECTRON CONFIGURATION: EXCEPTIONS (SIMPLIFIED)

PRACTICE: Illustrate the exception to the electron configuration of molybdenum.

Mo (Z = 42)

PRACTICE: Which of the following is the correct electron configuration of gold?

- a) [Xe] 6s²4f¹⁴5d⁹
- b) [Ar] 5s14f145d10
- c) [Xe] 6s¹5d¹⁰
- d) [Xe] 6s¹4f¹⁴5d¹⁰
- e) [Xe] 6s¹4f¹5d¹⁰

PRACTICE: A comparison of the electron configurations of palladium (Pd) and silver (Ag) indicates that:

- a) Ag has 2 more *d* electrons and the same number of *s* electrons as Pd.
- b) Ag has 1 more *d* electron and the same number of *s* electrons as Pd.
- c) Ag has 2 more *d* electrons and 1 less *s* electron than Pd.
- d) Ag has 1 more *d* electron and 1 less *s* electron than Pd.
- e) Ag has 1 more *d* electron and 1 more *s* electron than Pd.