| CONCEPT: LEWIS DOT STRUCTURES: EXCEPTIONS (SIMPLIFIED) | |---| | Some elements can have or octet electrons around themselves and maintain stability. | | □ Recall, their non-octet number of electrons is their group number. | | □ Incomplete Octet : Group 2A = and Group 3A = | | □ Expanded Octet : Group 5A =, Group 6A =, Group 7A =, Group 8A = | | EXAMPLE : Draw the Lewis Dot Structure for xenon dibromide molecule, XeBr ₂ . | | | | | | | | PRACTICE: Determine the Lewis Dot Structure for the following compound: SOCl ₂ | | | | | | | | | | | | Odd Electron Molecules | | Free Radicals are molecules or ions with a(n) electron around an element. | | □ Radicals compounds always have a(n) number of total valence electrons. | | □ To draw, place the electron on the element that is electronegative except for hydrogen atom. | | :N===Ö: | | :N==O: | | EXAMPLE: Draw the Lewis Dot Structure for the radical of nitrogen dioxide, NO ₂ . | | CONCEPT: LEWIS DOT STRUCTURES: EXCEPTIONS (SIMPLIFIED) | |--| | PRACTICE: Draw the Lewis Dot Structure for the radical hydroxide, OH. | | PRACTICE: Draw the Lewis Dot Structure for POCl ₃ . | | PRACTICE: Metalloids can sometimes adopt the bonding preferences of similar nonmetals. Based on your knowledge of expanded octets, draw the Lewis Dot Structure for the following ion, SiF_6^{2-} . |