CONCEPT: BOND ANGLES (SIMPLIFIED)

- The angle formed by _____ adjacent, neighboring atoms in a molecule.
 - □ When the central element has ____ lone pair(s) it possesses an *ideal bond angle*.
 - □ **Ideal Bond Angle:** The _____ angle elements take in order to minimize repulsion between one another.
 - When the central element has ____ or more lone pairs its ideal bond angle will be decreased.

EXAMPLE: If the H–C–H angle within the CH₄ molecule is 109.5°, what is the H–N–H bond angle within NH₃?

a) 120°

b) 109.5°

c) 107.3°

d) 180°

• Bond angles can further differentiate molecules that possess the same number of electron groups.

EXAMPLE: Determine the H–Sn–H bond angle for the following compound: SnH₂.

CONCEPT: BOND ANGLES (SIMPLIFIED) PRACTICE: Determine the bond angle for the following compound: BeCl₂. PRACTICE: Determine the bond angle for the thiocyanate ion, SCN-. **PRACTICE:** Determine the CI–O–CI bond angle for the OCI₂ molecule.