CONCEPT: STRONG ACID STRONG BASE TITRATIONS (SIMPLIFIED) - Deals with stoichiometric calculations of chemical reactions involving neutralization between strong acids and bases. - □ **Neutralization:** A chemical reaction in which the _____ of acid and base react stoichiometrically to one another. - □ Strong Acids neutralize _____. □ Strong Bases neutralize _____. ## **Stoichiometric Chart (Acid-Base Titrations)** • The chart uses the Given quantity of an acid or base to determine the Unknown quantity of another acid or base. **EXAMPLE:** If it takes 25.13 mL of 0.320 M Ba(OH)₂ to titrate 31.0 mL of a solution containing HCl, what is the molar concentration of HCl? **STEP 1:** Convert the **given** quantity into moles of **given**. STEP 2: Do a mole to mole comparison to convert moles of given into moles of unknown. **STEP 3:** If necessary, convert the moles of unknown into the final desired units. □ If molarity is required then divide the moles of unknown by its _____. ## **CONCEPT: STRONG ACID STRONG BASE TITRATIONS** PRACTICE: How many grams of HNO₃ are required to completely neutralize 110.0 mL of 0.770 M LiOH? $_$ HNO₃ (aq) + $_$ LiOH (aq) \longrightarrow $_$ LiNO₃ (aq) + $_$ H₂O (I) **PRACTICE:** Vinegar is a solution of acetic acid, CH₃COOH, dissolved in water. A 5.54 g sample of vinegar was neutralized by 30.10 mL of 0.100 *M* NaOH. What is the mass percent of acetic acid in the vinegar? ___ CH₃COOH (aq) + ___ NaOH (aq) \longrightarrow ___ CH₃COONa (aq) + ___ H₂O (l) **PRACTICE:** What is the molar mass of a 0.350 g sample of a HA acid if it requires 50.0 mL of 0.440 M Sr(OH)₂ to completely neutralize it? A is used as a place holder for the unknown nonmetal of the acid.