CONCEPT: SPONTANEOUS REDOX REACTIONS

- Redox Reactions are spontaneous when an element can _____ displace another element within a compound.
 - □ **Displace**: To remove an element from its compound and thereby _____ it.
 - Activity Series Chart determines if an element can displace another element.
 - □ An element _____ in the activity series chart will displace an element ____ in the activity series chart.
 - □ Recall, an oxidizing agent is _____ and the reducing agent is _____.

EXAMPLE: Based on Activity Series Chart, determine if the following reaction represents a spontaneous redox reaction.

Ca (s) + AgCl (s) -

STEP 1: Locate the monoatomic element on the Activity Series Chart.

STEP 2: If it is _____ on the Activity Series Chart, it will displace the element within the nearby compound.

CONCEPT: SPONTANEOUS REDOX REACTIONS

PRACTICE: Which element is the best reducing agent?

- a) Manganese
- b) Aluminum
- c) Lithium
- d) Nickel
- e) Chromium

PRACTICE: Determine which of the following redox reactions will occur spontaneously in the forward direction?

a) Ni (s) +
$$Zn^{2+}$$
 (aq) \longrightarrow Ni²⁺ (aq) + Zn (s)

b) Fe (s) + Pb⁴⁺ (aq)
$$\longrightarrow$$
 Fe²⁺ (aq) + Pb (s)

c) Al (s) + Ag⁺ (aq)
$$\longrightarrow$$
 Al³⁺ (aq) + Ag (s)

d) Pb (s) +
$$Mn^{2+}$$
 (aq) \longrightarrow Pb²⁺ (aq) + Mn (s)

PRACTICE: Suppose you wanted to cause Ni²⁺ ions to come out of solution as solid Ni. Which metal could you use to accomplish this?

- a) Au
- b) Sn
- c) Mn
- d) Ag

e) Cu