CONCEPT: CHEMISTRY GAS LAWS

- Chemistry Gas Laws are laws that relate together the pressure, volume and temperature of a gas.
 - □ The *Ideal Gas Law* can be used to determine them.

- Boyle's Law: states that V and P are _____ proportional at constant n and T.
 - □ Named after Robert Boyle, illustrates how the volume of a container is greatly affected by pressure changes.

- Gay-Lussac's Law (Amonton's Law): states that P and T are _____ proportional at constant n and V.
 - \Box As temperature $\widehat{\Box}$ gas particles collide with the walls more rapidly, which _____ the pressure.
 - □ All Gas Law calculations must use the SI unit for temperature in _____.

CONCEPT: CHEMISTRY GAS LAWS

- Avogadro's Law: states that V and n are _____ proportional at constant P and T.
 - □ Named after Amedeo Avogadro, shows volumes of gases are connected to their number of molecules.

- Charles's Law: states that V and T are _____ proportional at constant n and P.
 - □ Named after Jacques Charles, illustrates how the volume of a container is greatly affected by temperature.

EXAMPLE: A 10.0 L cylinder with a movable piston contains 10.0 g of xenon gas. When an additional 10.0 g of xenon gas are added the volume increases. Which Chemistry Gas Law can be used to justify this result?

- a) Charles's Law
- b) Avogadro's Law
- c) Gay-Lussac's Law
- d) Boyle's Law

CONCEPT: CHEMISTRY GAS LAWS

PRACTICE: A 10.0 L cylinder with a movable piston exerts 3.00 atm of pressure. What will happen to the pressure if the volume of the container increases to 20.0 L?

- a) It will double
- b) It will decrease by half
- c) It will increase slightly
- d) No change