CONCEPT: MOLECULAR POLARITY (SIMPLIFIED)

Molecular Polarity & Perfect Shapes

 Recall, polarity of chemical bonds arises from sh 	aring of electrons between atoms based on electronegativity
□ Molecular Polarity: Polarity that arises for an entire	e molecule.
□ Nonpolar Molecule: Any hydrocarbon and any non-	-hydrocarbon with a <i>perfect shape</i> .
- Perfect Shape: When the central element ha	as lone pairs and the surrounding elements.
□ Polar Molecule: Any Lewis Dot Structure that doesn	n't have a perfect shape.

Molecular Polarity				
Electron Groups	0 Lone Pair	1 Lone Pair	2 Lone Pairs	3 Lone Pairs
2				
3		•		
4				

EXAMPLE: Determine if carbon dioxide, CCl₄, is polar or nonpolar.

PRACTICE: Determine if the compound of BCl₂F is polar or nonpolar.

CONCEPT: MOLECULAR POLARITY (SIMPLIFIED) **PRACTICE**: Determine if phosphorus trihydride, PH₃, is polar or nonpolar. **PRACTICE:** Determine if difluorine selenide, F_2Se , is polar or nonpolar. **PRACTICE:** Determine if carbon dioxide, CO₂, is polar or nonpolar.